Found 146 results
Author [ Title(Desc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Brain Diseases, Sherif, MA, and Lytton WW , Cambridge, Massachusetts, (2016)
Brain Ischemia and Stroke, Neymotin, Samuel, Taxin ZH, Mohan A, and Lipton P , Encyclopedia of Computational Neuroscience, (2013)
Brain organization: from molecules to parallel processing, Lytton, WW , Contemporary Behavioral Neurology, Newton, MA, p.5-28, (1997)
Broadening of activity with flow across neural structures, Lytton, WW, Orman R, and Stewart M , Perception, Volume 37, p.401-407, (0)
Burst Firing in Identified Interneurons of the Rat Lateral Geniculate Nucleus, Zhu, JJ, Uhlrich D, and Lytton WW , Neuroscience, Volume 91, p.1445-1460, (1999)
Calcium regulation of {HCN} channels supports persistent activity in a multiscale model of neocortex, Neymotin, Samuel, McDougal Robert A., Bulanova AS, Zeki M, Lakatos P, Terman D, Hines ML, and Lytton WW , Neurosci, Volume 316, Number 1, p.344-366, (2016)
Calcium regulation of {HCN} supports persistent activity associated with working memory: a multiscale model of prefrontal cortex, Neymotin, Samuel, McDougal Robert A., Hines ML, and Lytton WW , BMC Neuroscience, Volume 15, Number Suppl 1, p.P108, (2014)
Can the hippocampus tell time?: The temporo-septal engram shift model, Lytton, WW, and Lipton P , Neuroreport, Volume 10, p.2301-2306, (1999)
Circuit changes augment disinhibited shock responses in computer models of neocortex, Lytton, WW, Neymotin Samuel, Lee HY, Uhlrich DJ, and Fenton AA , American Epilepsy Society Annual Meeting, Volume 3, p.284, (0)
Color opponent receptive fields self-organize in a biophysical model of visual cortex via spike-timing dependent plasticity, Eguchi, A, Neymotin Samuel, and Stringer SM , Front Neural Circuits, Volume 8, p.16, (2014)
Computational Intelligence in Electrophysiology, Günay, C, Smolinski TG, Lytton WW, Morse TM, Gleeson P, Crook S, and , Studies in Computational Intelligence, Volume 122, p.325-359, (2008)
Computational Neuroscience, Lytton, WW, and Sejnowski TJ , Diseases of the Nervous System: Clinical Neurobiology, Orlando, Fl, (1992)
Computational Neuroscience of Neuronal Networks, Neymotin, Samuel, Mathew A.M., Kerr C., and Lytton WW , New York, (2012)
Computational Neuroscience of Neurons and Synapses, Lytton, WW, and Kerr C. , New York, (2012)
Computer model of antiepileptic effects mediated by alterations in \gabaa\-mediated inhibition, Thomas, E, and Lytton WW , Neuroreport, Volume 9, p.691-696, (1998)
A computer model of clonazepam's effect in a thalamic slice model of absence epilepsy, Lytton, WW , Neuroreport, Volume 8, p.3339-3343, (1997)
Computer model of ethosuximide's effect on a thalamic neuron, Lytton, WW, and Sejnowski TJ , Volume 32, p.131-139, (1992)
Computer model of passive signal integration based on whole-cell ınvit\ studies of rat lateral geniculate nucleus, Briska, AM, Uhlrich DJ, and Lytton WW , European Journal of Neuroscience, Volume 17, p.1531-1541, (2003)
Computer modeling for pharmacological treatments for dystonia, Neymotin, Samuel, Dura-Bernal Salvador, Moreno H, and Lytton WW , Drug Discov Today: Dis Model, p.In press, (2017)
Computer modeling of epilepsy: opportunities for drug discovery, Lytton, WW , Drug Discov Today: Dis Model, p.In press, (2017)
Computer modeling of ischemic stroke, Seidenstein, AH, Barone FC, and Lytton WW , Scholarpedia, Volume 10, p.32015, (0)
Computer modeling of ischemic stroke, Seidenstein, AH, Barone FC, and Lytton WW , Scholarpedia, Volume 10, p.32015; revision \#148671; Accessed Oct 12, 2015, (2015)