Found 179 results
Author [ Title(Desc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Lytton, WW., & Drongelen W. (2015).  Beyond the canon: temporal and spatial multiscale organization in cortex. Computational Neuroscience Meeting Workshop.
Sherif, M., & Lytton WW. (2016).  Brain Diseases. (Arbib, MA., & Bonaiuto JJ., Ed.).From Neuron to Cognition Via Computational Neuroscience. 673-692.
Neymotin, S., Taxin ZH., Mohan A., & Lipton P. (2013).  Brain Ischemia and Stroke. (Jaeger, D., & Jang R., Ed.).Encyclopedia of Computational Neuroscience.
Lytton, WW. (1997).  Brain organization: from molecules to parallel processing. (Trimble, MR., & Cummings JL., Ed.).Contemporary Behavioral Neurology. 5-28.
Lytton, WW., Orman R., & Stewart M. (2008).  Broadening of activity with flow across neural structures. Perception. 37, 401-407.
Zhu, JJ., Uhlrich D., & Lytton WW. (1999).  Burst Firing in Identified Interneurons of the Rat Lateral Geniculate Nucleus. Neuroscience. 91, 1445-1460.
Neymotin, S., McDougal R. A., Bulanova AS., Zeki M., Lakatos P., Terman D., et al. (2016).  Calcium regulation of HCN channels supports persistent activity in a multiscale model of neocortex. Neurosci. 316, 344-366.
Neymotin, S., McDougal R. A., Hines ML., & Lytton WW. (2014).  Calcium regulation of HCN supports persistent activity associated with working memory: a multiscale model of prefrontal cortex. BMC Neuroscience. 15, P108.
Lytton, WW., & Lipton P. (1999).  Can the hippocampus tell time?: The temporo-septal engram shift model. Neuroreport. 10, 2301-2306.
Lytton, WW., Neymotin S., Lee HY., Uhlrich DJ., & Fenton AA. (2008).  Circuit changes augment disinhibited shock responses in computer models of neocortex. American Epilepsy Society Annual Meeting. 3, 284.
Lytton, WW., Neymotin SA., Lee HK., Uhlrich DJ., & AA F. (2008).  Circuit changes augment disinhibited shock responses in computer models of neocortex. American Epilepsy Society Annual Meeting.
Eguchi, A., Neymotin S., & Stringer SM. (2014).  Color opponent receptive fields self-organize in a biophysical model of visual cortex via spike-timing dependent plasticity. Front Neural Circuits. 8, 16.
Günay, C., Smolinski TG., Lytton WW., Morse TM., Gleeson P., Crook S., et al. (2008).  Computational Intelligence in Electrophysiology. Studies in Computational Intelligence. 122, 325-359.
Lytton, WW., & Sejnowski TJ. (1992).  Computational Neuroscience. (Asbury, AK., McKhann GM., & McDonald WI., Ed.).Diseases of the Nervous System: Clinical Neurobiology.
Holmes, W. R., Jung R., & Skinner F. (2007).  Computational Neuroscience (CNS*2007). BMC Neuroscience. 8, I1.
Holmes, W. R., Jung R., & Roberts P. (2008).  Computational Neuroscience (CNS*2008). BMC Neuroscience. 9, I1.
Johnson, D. H., Jung R., & Ernst U. (2009).  Computational Neuroscience (CNS*2009). BMC Neuroscience. 10, I1.
Neymotin, S., Mathew A.M.., Kerr C.., & Lytton WW. (2013).  Computational Neuroscience of Neuronal Networks. (Pfaff, D., Ed.).
Lytton, WW., & Kerr C.. (2013).  Computational Neuroscience of Neurons and Synapses. (Pfaff, D., Ed.).
Thomas, E., & Lytton WW. (1998).  Computer model of antiepileptic effects mediated by alterations in \gabaa\-mediated inhibition. Neuroreport. 9, 691-696.