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Dystonia is a movement disorder that produces invol-

untary muscle contractions. Current pharmacological

treatments are of limited efficacy. Dystonia, like epi-

lepsy is a disorder involving excessive activity of motor

areas including motor cortex and several causal gene

mutations have been identified. In order to evaluate

potential novel agents for multitarget therapy for dys-

tonia, we have developed a computer model of cortex

that includes some of the complex array of molecular

interactions that, along with membrane ion channels,

control cell excitability.

Introduction

A number of movement disorders, as well as epilepsy, are

associated with increased activity, and likely with hyperex-

citability, in cortex. Dystonia is a movement disorder which

produces involuntary muscle contractions. It involves pa-

thology in multiple brain areas including basal ganglia, thal-

amus, cerebellum, and sensory and motor cortices. Although

much of the research in dystonia has looked at the role of the

basal ganglia, pharmacological treatment is often provided

directly to the muscle through injection of botulinum toxin,
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anticholinergic agents and benzodiazepines. Motor cortex is

another possible target for drug therapy, with manifestations

that include augmented beta oscillations. Using a mechanis-

tic multiscale model of primary motor cortex, we have

assessed parameter combinations that produce dystonia to

suggest potential drug combinations that might interfere

with these pathological dynamics.

Schematized and mechanistic models for dystonia

Dystonia is a movement disorder that produces intermittent

prolonged involuntary muscle activation that results in twist-

ing, turning or posturing of a limb or other body part and

repetitive prolonged movements. As with other movement

disorders, the difficulty in modeling dystonia stems from the

complexity of the motor system itself: the large set of special-

ized nuclei in brain and spinal cord that are interacting to

produce movement in continuous concert with sensory areas

in the sensorimotor loop. These areas include basal ganglia,
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thalamus, cerebellum, red nucleus, anterior horn, etc. Even

when a primary pathology can be localized to a particular

area, plastic responses in other motor and sensory areas will

alter the expression of the disease in a way that can either

ameliorate or exacerbate disability, and treatments may tar-

get areas other than the area of primary pathology. For

example, although task-specific focal dystonia such as writers

cramp is thought to occur due to overlearning in sensory and

motor cortical areas, some of the treatments used are target-

ing basal ganglia.

The large number of areas involved in motor activity

would be best served by simulations that encompass all of

these areas. Such an approach requires working out plausi-

ble input and output signal patterns for each nucleus or

area, and then requires working with highly schematized

models. Schematized models typically use mean-field

approximations, where brain areas are approximated by

scalar signals representing overall activity. Some schema-

tized models may include more detailed integrate-and-fire

or scalar (perceptron) neural network models [1–3]. How-

ever, this intermediate modeling level also lacks the cell

and molecular details useful for comparison with pharma-

cological intervention.

Sanger and Merzenich [4] used a schematized model to

identify likely patterns of positive feedback between sensory

and motor cortical areas that would lead to runaway excita-

tion. Their cortical control-theory model was able to identify

particular dynamical patterns that could potentially be inter-

rupted to prevent the recurrence of these pathological pat-

terns. Interestingly, this provided some suggestion as to the

mechanism of self-treatment using ‘sensory tricks’, where the

patient relaxes the dystonia by touching a particular spot – for

example, often on the side of the chin to reduce the head-

turning of torticollis. However, the limitation of this model,

as for other schematized models, was that it could not suggest

drugs or drug targets for treatment.

Mechanistic multiscale modeling is an alternative to sche-

matized models that does afford the opportunity to reach

down to the molecular scale of pharmacology and thereby

assist in the development of novel treatments. These models

will include more levels or scales than are included in the

schematized model, and for purposes of drug discovery

should include some molecular detail.

A mechanistic model of cortical hyperexcitability

Dystonia is a dynamical disorder that can be defined by its

particular patterns of muscle activation. The excessive muscle

activity of dystonia is a consequence of dynamical disorder in

brain and spinal cord, associated with higher than normal

activity patterns. To the extent that the disease is caused by

cortical dysfunction, as assumed by control theory models

[4], we identify hyper-activity as a manifestation of hyperexcit-

ability.
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The major disorder of cortical hyperexcitability is epilepsy,

manifested by seizures. In both epilepsy and dystonia, un-

derlying causes will include changes or anomalies in ion

channel and receptor densities, as well as in cortical wiring

[5], which produce excitation/inhibition imbalances and

with excessive cortical firing and excessive synchrony [6–

10]. The intensity, pattern, and spread of hypersynchrony

differ between epilepsy and dystonia. Electroencephalo-

graphic signatures of the two disorders also differ, with

seizures characterized by powerful discharges that may be

time locked to the movement while dystonia shows an

increase in beta (12–25 Hz) oscillations [11–13]. In addition

to there being various patterns of hyperexcitability in cortex,

there are various ways to produce hyperexcitability in silico.

We developed a mechanistic multiscale model of cortex

(Fig. 1) in which we could identify patterns of activity for: (1)

normal; (2) dystonia; (3) epileptiform (seizure) [14]. Model

scales ranged from molecular to network so as to permit us to

associate potential pharmacological manipulations with

alterations in network dynamics. These models therefore

combine the domain of computational systems biology –

molecular interactions, with the traditional approach to

computational neuroscience – models of cells as electrically

interacting units with only ion channels represented at the

molecular level.

Varying the densities of voltage-sensitive ion channels

and receptor densities on pyramidal neurons and interneur-

ons within reasonably ranges resulted in families of models

that could be classified as having normal, dystonia-like, or

epileptiform activity patterns (Fig. 2). Dystonia models were

characterized by synchronous population discharges at beta

frequency (�20 Hz). In each case, there were multiple pa-

rameter sets that produced similar dynamics [15–18]. This

phenomenon is well known in biology where the combina-

torics of multiple alleles for every feature, for every ion

channel, enzyme and receptor, means that no two people

are entirely alike. Despite not being alike, all people show

similar dynamics, a phenomenon referred to as parameter

degeneracy [19].

We locate particular models that produce dystonia in high-

dimensional parameter space. A three-dimensional slice of

the eleven-dimensional parameter space (Fig. 3), shown in a

normalized space relative to a baseline value, demonstrated

that dystonia cases tend to have higher levels of voltage-gated

Ca2+ channels (L-, N-, T-types; labeled Ca), lower levels of BK

K+ channels in the plasma membrane, and higher levels of

ryanodine (RYR) channels in endoplasmic reticulum. In a

particular case, we can indicate a direction in parameter space

(Fig. 3, arrow) going from a dystonia parameter-set to a

normal parameter-set. For any dystonic case in our set, we

can identify a simple path, involving one or two parameter

changes, which leads to a normal set, indicating alterations to

be effected in our simulated ‘patient’ that would treat the
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Figure 1. Model schematics. (a,b) Motor cortex architecture. Circles represent neuronal populations (red: excitatory cells; green: fast-spiking

interneurons; blue: low-threshold firing interneurons). Circle size denotes number of cells in population. Lines (with arrows) indicate connections between

the populations. Thickness of lines proportional to synaptic weights. E cells synapse with AMPAR/NMDARs; I cells synapse with GABAAR/GABABRs.

Circles with self-connects denotes recurrent connectivity. (a) Excitatory connections. E5P projects to spinal cord (not modeled). (b) Inhibitory

connections. (c) Chemical signaling in pyramidal cells showing fluxes (black arrows) and second- (and third- etc) messenger modulation (red back-beginning

arrows). We distinguish membrane-associated ionotropic and metabotropic receptors and ion channels involved in reaction schemes in red (in reality, it is

likely that almost every membrane-bound protein is modulated). External events are represented by yellow lightning bolts—there is no extracellular

diffusion; the only extracellular reaction is glutamate binding, unbinding, and degradation on mGluR1 after an event. Ca2+ is shown redundantly in blue—

note that there is only one Ca2+ pool for extracellular, 1 pool for cytoplasmic, and 1 pool for ER (PLC, phospholipase C; DAG, diacyl-glycerol; cAMP, cyclic

adenosine monophosphate; PIP2, phosphatidylinositol 4,5-bisphosphate).
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Figure 2. Raster plot showing 1 s patterns of normal activity (left column) compared to dystonia activity (right column) in multiple cortical models. Red,

blue, green dots are from excitatory neurons, low-threshold spiking interneurons, and fast-spiking interneurons respectively. Spikes are arranged by cortical

layer (Layers 2/3 at top, layer 6 at bottom). (Within each model, channel densities of neurons of a given type are identical.)
disorder (personalized medicine); the same manipulation

would not work for other cases and would therefore not be

expected to provide a universal therapeutic approach (simi-

larly we know of many types of dystonias and different gene

mutations that can produce hereditary forms). Furthermore,
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the normal (blue) and dystonia (red) groups do not form well

defined clouds. It is difficult to separate normal from dystonic

sets, or to separate out different groups of dystonic patients to

be treated in a common way. We therefore could not separate

out different groups of dystonic patients who could be treated
cological treatments for dystonia, Drug Discov Today: Dis Model (2017), http://
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Figure 3. Navigating through three dimensions. Dystonia cases in

red and control in blue.
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Figure 4. SVM classification accuracy generally increases when using 1–10 pa

dystonia. (a) Best classification accuracy from all combinations of x parameters 

error). (b) Best parameter combinations (red: parameter used; blue: paramete
identically within group – precision medicine – despite dif-

ferent treatments between groups.

While it is already difficult to navigate among cases and

controls in the three dimensional subspace of Fig. 3, it is

impossible to visualize higher dimensions to identify separa-

tions between groups in 4 or more dimensions. Instead,

machine-learning algorithms are used to identify what is

where in high-dimensional parameter spaces. In this case,

we first tried an entirely unsupervised algorithm, k-means,

which attempts to find a certain number k of galaxy-like

clusters of points in the space. Consistent with our difficulties

identifying such clusters in 3-space (e.g. Fig. 3), the algorithm

failed to separate the data into 2 well-separated groups cor-

responding to normal and dystonic parameters or, to provide

multiple group separations when run with higher k.

We then turned to support vector machines (SVM), a

supervised machine-learning algorithm which separates

groups based on user-provided labels – in this case dystonia
cological treatments for dystonia, Drug Discov Today: Dis Model (2017), http://
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rameters, indicating utility of multitarget pharmacy approach to treating

(solid line: mean cross-validation accuracy (n = 10); dotted line: standard

r not used). x-axis in (a,b) indicates number of parameters used.
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vs control. SVMs were run for every potential subspace to

determine which combination at that dimensionality gives

the best separation. SVMs were able to separate out the 2

groups with a gradual increase in the quality of separation at

higher dimensions up to 6 dimensions (Fig. 4). From there,

plateauing was seen up to 10 dimensions, likely indicating

further improvement in distinction masked by the ‘curse of

dimensionality’ (using a constant number of data points, the

density of points falls off exponentially with increase in

dimension making the separation problem correspondingly

harder for algorithms to perform, and thereby providing an

underestimate of the predictive strength of the optimal sepa-

ration [20,21]).

The value of these SVM results of Fig. 4 is that they not only

suggest the number of parameters that might need to be

modified to relieve pathology (6–10), but also identify the

individual parameters in order of importance. These param-

eters at the molecular level are therefore governing, in com-

bination, the ability to define a plane or other surface that

best separates the subspace of pathology from the subspace of

normal physiology. We would then predict that a mathemat-

ical ‘therapy’ for our dystonic simulations could be effected

by following the direction normal to this separation across

that set of parameters. Going from mathematical therapy to

patient therapy, these parameter changes would be brought

about by using drugs that modulate that particular channel or

signaling interaction.

In making the translation from simulation to therapy, we

would want to remain mindful that some combinations of

parameter alterations may tend to simply shut down the

network, suggesting that the corresponding drug treatments

might not be tolerated due to these types of side effects that

are typically seen with drugs that reduce activity (e.g. benzo-

diazepines). For example, we can propose a hypothetical 4-

drug cocktail using Fig. 4. We would start by addressing the

first 2 parameters identified, the fast sodium and delayed

rectifier potassium channels. These are of course the channels

responsible for fast spiking. We might therefore start with a

drug that reduces fast spiking, such as diphenylhydantoin.

Noting now that the voltage-gated calcium channel parame-

ter at the top of Fig. 4b is red in the third column, we might

then consider the addition of a VGCC blocker, for example

verapamil. Similarly, we would look for a drug that would

augment KA and a drug that blocks the ryanodine (RYR)

receptor. We note that the mapping from parameter to drug

will never be one-to-one. Most drugs have effects at multiple

targets – so-called ‘dirty drugs’. However, this is something

that we could test directly in the model by modulating the

multiple drug targets simultaneously, thereby making this

limitation into a positive feature by identifying drugs with a

particular molecular spectrum of action that more closely

match directions in parameter space that are identified by the

model.
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Conclusions

Multiscale mechanistic simulations could be used to develop

polypharmaceutical drug cocktails or to inform the use of

multi-target therapeutic agents (dirty drugs) through param-

eter space assessments after separation of pathological from

physiological activity patterns for dynamic diseases such as

dystonia and epilepsy.
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