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Abstract

We here reconsider current theories of neural ensembles in the context of recent discoveries

about neuronal dendritic physiology. The key physiological observation is that the dendritic plateau

potential produces sustained depolarization of the cell body (amplitude 10–20 mV, duration

200–500 ms). Our central hypothesis is that synaptically-evoked dendritic plateau potentials lead

to a prepared state of a neuron that favors spike generation. The plateau both depolarizes the cell

toward spike threshold, and provides faster response to inputs through a shortened membrane

time constant. As a result, the speed of synaptic-to-action potential (AP) transfer is faster during

the plateau phase. Our hypothesis relates the changes from “resting” to “depolarized” neuronal

state to changes in ensemble dynamics and in network information flow. The plateau provides the

Prepared state (sustained depolarization of the cell body) with a time window of 200–500 ms. Dur-

ing this time, a neuron can tune into ongoing network activity and synchronize spiking with other

neurons to provide a coordinated Active state (robust firing of somatic APs), which would permit

“binding” of signals through coordination of neural activity across a population. The transient Active

ensemble of neurons is embedded in the longer-lasting Prepared ensemble of neurons. We

hypothesize that “embedded ensemble encoding” may be an important organizing principle in net-

works of neurons.
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1 | INTRODUCTION

How do neurons and neural networks interact to solve complex tasks?

Despite major advances in cellular and molecular neuroscience (Grose-

nick, Marshel, & Deisseroth, 2015; Tao, Zhang, Xiong, & Zhou, 2015;

Zhang, Cudmore, Lin, Linden, & Huganir, 2015), and in human brain

structural and functional imaging (Lee, Kreitzer, Singer, & Schiff, 2017),

the basis of neural computation is not completely understood (Dayan,

Feller, & Feldman, 2011; Olshausen & Field, 2004; Sompolinsky, 2014;

Vogels, Rajan, & Abbott, 2005). In some ways, these major experimen-

tal advances and new data sets produce major strains on theories and

viewpoints that had seemed clearly delineated in a time of simpler

data. A primary challenge for neuroscience in general, and for theoreti-

cal neuroscience in particular, is to fit together existing theories with

new findings, reconciling top-down concepts, models, frameworks, and

theories (Palmer, Marre, Berry, & Bialek, 2015; Sompolinsky, 2014)

with the changing bottom-up landscape of neuroscience discoveries

(Bittner et al., 2015; Grosenick et al., 2015; Seibt et al., 2017). Here we

review recent experimental evidence of glutamate-mediated dendritic
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plateau potentials, capable of bringing neurons into a sustained depo-

larized state, which favors action potential (AP) firing and formation of

new neural ensembles. Our hypothesis is based on the idea that

synaptically-evoked dendritic plateau potentials lead to a prepared

state that favors spike generation. The plateau both depolarizes the cell

towards spike threshold, and provides faster response to inputs

through a shortened membrane time constant. The speed of synaptic-

to-AP transfer in individual cells is faster during the neuronal plateau

depolarization. In this way, dendritic plateau potentials occurring in a

fraction of cells are poised to affect the dynamic response of the whole

network. The sustained depolarization of the cell body provides neu-

rons with a time window of 200–500 ms, during which neurons can

tune into ongoing network activity and synchronize spiking with other

neurons. The group of actively spiking cells (ensemble “2”) is recruited

from the group of cells (ensemble “1”) brought into sustained depolar-

ized state by ongoing dendritic plateau potentials. The group of actively

spiking cells is thus embedded in the group of prepared (depolarized)

cells. The transient ensemble “2” of spiking neurons is embedded in the

longer-lasting ensemble “1” of neurons in sustained depolarized state.

Besides trying to fit together existing theories with new experimental

findings, the “embedded ensemble encoding” hypothesis, also pulls

together two concepts, rate coding versus temporal coding, that are

typically seen to be in opposition.

2 | PART 1: ELECTRICAL SIGNALING

In this section, we argue that the theory of neural ensembles and the

“embedded ensemble encoding” hypothesis are both critically depend-

ent on electrical signaling (Grewe et al., 2017; Pinotsis, Brincat, &

Miller, 2017). Researchers accept that electrical signaling is the key

mechanism for information transmission and processing in the brain.

Why are brain theory and computational models of brain function

based on the electrical signal, and not on some other physical signal

(optic or magnetic)? We identify six cardinal features of electrical sig-

naling that are essential for a theory of the brain and cannot be repli-

cated by other signaling mechanisms.

2.1 | Electrical signaling: Cellular specificity

A humoral signal emitted from a blood vessel or a liver cell will indis-

criminately activate a large set of neighboring cells in one region of a

large organ like the liver (Figure 1a1, Liver, red cells). The bottom line of

the liver signaling scheme is that all activated cells are more or less

grouped in one location (Figure 1a1, red cells). The number of potential

ensembles of activated liver cells is low, because these cells are acti-

vated in large sections of adjacent cells via body fluids. Also, the struc-

tural complexity of a potential liver cell ensemble (Figure 1a1, red cells)

is low for the same reason.

FIGURE 1 Unique advantages of electrical signaling. (a1) Schematic representation of a liver tissue. Each circle represents one hepatocyte.

Color indicates “activated” cells. Cellular activity is synchronized among neighboring hepatocytes by diffusing chemical signals. (a2)

Schematic representation of a brain tissue section. Each circle represents one neuron. Color indicates “activated” cells. Cellular activity is

synchronized between particular neurons (not all neurons) by electrical signaling. (b) Synaptic inputs impinge on one basal dendrite of a

cortical pyramidal cell. Synaptically-induced depolarization is strongest in one cellular compartment (red halo). (c1) Slow electrical signals in

the form of sustained plateau depolarizations; amplitude �20 mV, duration �500 ms. (c2) Electrical activity is synchronized among four cells

on a slow temporal scale (seconds). Dashed rectangle indicates a period of time when all four cells are in depolarized state. (d1) Fast electri-

cal signals, excitatory postsynaptic potential (EPSP), and action potential (AP), are shown on a fast time scale. (d2) AP firing is simultaneously

recorded in four neurons. Each vertical tick represents one AP, as in “single-unit” recordings. Synchronization can be based on the temporal

relation between groups of APs (AP bursts) or individual APs (spikes). Synchronized bursts of APs or synchronized single APs are marked by

white background rectangle
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The brain signals are a combination of bioelectrical and special-

ized humoral signals. Long-range brain signals are predominantly

electrical, and many humoral signals are restricted by synapses so as

to be point-to-point rather than broadcast. Nervous systems com-

bine signal speed and signal specificity through precise targeting.

Brain signals are carried great distances by electrical impulses with-

out crosstalk via specific conduits—the axons. The enormous abun-

dance and complexity of axonal paths allows for activation of

specific individual cells separated by specific inactive cells (Figure

1a2, red cells). The targeting mechanism based on axons and electri-

cal impulses permits activation of distinct groups of selected cells in

and among brain regions (neural ensemble). Brain signaling therefore

permits activated cells to be scattered in space (Figure 1a2, red

cells). That is, any cell in the brain can potentially become a member

of a functional ensemble. The number of distinct ensembles that

can potentially be formed out of the total number of brain neurons

(100 billion) is very large. If each neural ensemble is made of

approximately 1,000 cells per functional ensemble, the number of

distinct ensembles of this size that can potentially be formed out of

the total number of living brain cells is astronomical, allowing for

tremendous number of percepts and memory traces over the entire

life span. In summary, electrical signaling permits large number of

combinations and permutations of individually-activated cells (Figure

1a2, red cells).

2.2 | Electrical signaling: Subcellular specificity

Histoanatomical and physiological data both show that electrical signals

target specific subcompartments of neurons (Feldmeyer, Lubke, Silver,

& Sakmann, 2002; Markram et al., 2015); down to the level of individ-

ual dendritic branches; for example, thin dendrites of cortical pyramidal

neurons (Figure 1b). If synaptic inputs are restricted to one dendritic

branch, then the resulting membrane depolarizations can be spatially

restricted to that input site (Mel, 1993). At the same moment of time,

one dendritic branch experiences strong membrane potential transient,

while the neighboring dendritic branch is without voltage transients

(Milojkovic, Radojicic, Goldman-Rakic, & Antic, 2004, their figure 7).

Local dendritic depolarizations and local dendritic summation of synap-

tic inputs assure that nerve cells process afferent synaptic inputs in

two stages (two-layered model, Poirazi, Brannon, & Mel, 2003; Polsky,

Mel, & Schiller, 2004). In the first processing stage, incoming synaptic

inputs are summed within thin-dendrite compartments or subunits,

each of which is governed by timing-based, regenerative thresholding,

or other I/O functional forms—for example, the sigmoidal thresholding

FIGURE 2 Dendritic plateau potentials—somatic plateau depolarizations. (a) Cartoon of a pyramidal neuron showing classes of dendrites:

basal, oblique, and apical trunk. Voltage waveform of dendritic plateau potential and the resulting somatic depolarization (“P”), in response

to glutamatergic stimulation of one basal dendrite. “Glut.” marks the glutamate iontophoresis site. (b) Cartoon of four glutamate

iontophoresis pulses (each pulse55 ms) delivered on one basal dendrite. Glutamate stimuli trigger somatic plateau depolarizations (P),

which resemble neuronal UP states. The somatic P without APs (*) is termed a “Prepared state” of a neuron (Pr). The somatic P

accompanied by action potentials (APs) is termed “Active state” (Act). The somatic DOWN state is termed an “OFF state” of a neuron (off).

(c) Cartoon of a pyramidal neuron—black arrows mark glutamatergic inputs of approximately identical weight. Two spatial patterns of

synaptic inputs are shown: distributed (everywhere) and clustered (on one basal dendrite). Clustered inputs produce glutamate spillover (red

cloud). (d) At the low levels of incoming synaptic inputs, the somatic membrane potential (Vm) is dwelling near resting potential (OFF state).

Clustered glutamatergic inputs onto one basal dendrite (“clustered”) produce spillover glutamate (red cloud), which triggers dendritic plateau

potential, which in turn brings the cell body into a plateau depolarization. During the plateau depolarization (Prepared state), the membrane

potential is �20 mV closer to the AP threshold and the membrane time constant is shorter due to a glutamate-mediated drop in membrane

resistance. As a result, the neuron is more responsive to incoming synaptic inputs distributed across the dendritic tree (black arrows). The

same-size synaptic input (three arrows) fails to initiate AP in the OFF state, but successfully drives AP firing in the Prepared state
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form proposed by Poirazi et al. (2003). “Thresholding nonlinearity” sim-

ply means that upon reaching a certain voltage threshold the dendrite

is no longer behaving as a linear summator of potentials, but instead it

is producing additional regenerative potential, disproportional to the

received input. The examples of local regenerative potentials in thin

branches of cortical pyramidal neurons (basilar, oblique, and tuft)

include dendritic sodium spikelet, dendritic Ca21 spikes, dendritic N-

methyl-D-aspartate (NMDA) spikes, and glutamate-mediated dendritic

plateau potentials (Antic, Zhou, Moore, Short, & Ikonomu, 2010; Ariav,

Polsky, & Schiller, 2003; Grienberger, Chen, & Konnerth, 2015; Miloj-

kovic, Wuskell, Loew, & Antic, 2005b; Schiller, Major, Koester, & Schil-

ler, 2000). In a second stage of the synaptic input processing, the

subunit outputs are combined linearly in the cell body to determine the

overall response of the cell—the neuron generates an axonal AP, or

spike which is selectively transmitted to the group of cells determined

by the connectome. In other words, the neuron output signal, the final

result of intracellular integration, is broadcast to all “prepaid” members

of the neuronal network. A key prediction of the two-layer model, but

not of the global summation model, is that summation should obey dif-

ferent rules for inputs delivered to the same versus different thin

branches of the nerve cell (Koch & Segev, 2000; Rall et al., 1992). In

essence, the AP output and the computational task of a given brain

cell, both depend on the exact location of the synaptic input on its den-

dritic tree (Branco & Hausser, 2011; Briggman, Helmstaedter, & Denk,

2011; Smith, Smith, Branco, & Hausser, 2013; Vlasits et al., 2016). The

final neuronal computations depend not only on the type of dendritic

operation and the dendritic and axosomatic thresholds, but also on the

global mapping of input features throughout the dendritic tree (Tran-

Van-Minh et al., 2015). The necessary level of subcellular input speci-

ficity is exclusively accomplished by axons and electrical signals flowing

through neural circuits and arriving at a precise dendrite (Figure 1b) or

even dendritic segment (i.e., distal versus proximal dendritic segment)

(Jadi, Behabadi, Poleg-Polsky, Schiller, & Mel, 2014). One exciting

theme emerging in the field of dendrite physiology is the notion that

dendritic regenerative potentials are essential for the organization of

neural networks. According to this theme, glutamate-mediated dendri-

tic spikes are the key determinants of synaptic plasticity (Brandalise,

Carta, Helmchen, Lisman, & Gerber, 2016; Golding, Staff, & Spruston,

2002; Gordon, Polsky, & Schiller, 2006) and in the long run dendritic

nonlinear responses build a high-performance connectome (Bono &

Clopath, 2017; Legenstein & Maass, 2017). In summary, electrical sig-

naling underlies not only function but also the development and struc-

ture of the complex brain.

2.3 | Electrical signaling: Temporal specificity

Human brain areas, involved in complex behavioral responses, are sep-

arated by considerable path distances often exceeding 5 cm (�2,500

cell body diameters) and the flow of information in the brain is not uni-

directional. Nearly all brain regions send signals into hierarchically

higher brain areas and receive immediate feedback from these areas, in

real time. For example, the cortical primary sensory areas (visual, audi-

tory, somatosensory, etc.) receive feedback (top-down) projections

from secondary and tertiary sensory areas, providing them with prepro-

cessed pieces of information pertaining to the object in the perceptual

field (Gilbert & Wiesel, 1983a; Larkum, 2012; Shipp & Zeki, 2002). In

this way, the outcome of the sensory process at the primary sensory

area (which is supposed to process the simplest fragments of the per-

ceptual object such as color, orientation, etc.) is strongly influenced

(Bayesian biased) by the higher cortical areas that have already been

informed about the complex features of the perceptual object including

size, class, emotional valence, etc. (Dura-Bernal, Wennekers, & Den-

ham, 2012; Ro, Breitmeyer, Burton, Singhal, & Lane, 2003). As the

uninterrupted flow of information forth (from lower to higher) and

back (from higher to lower) is critical for ongoing Bayesian expectation

information processing and critical for the success of a complex infor-

mation processing task, one can also assume that an exchange of just

one forward and one feedback “message” would not suffice. Rather,

several iterations may be required to achieve desirable results. If a psy-

chophysical reaction takes �200 ms (Wu, Crouzet, Thorpe, & Fabre-

Thorpe, 2015), then a communication signal underlying this reaction

should be capable of shuttling several times between two regions (cou-

ple of centimeters apart) in a period of time shorter than 200 ms.

Among all known cellular and molecular signals operating in the brain,

only electrical signals have sufficient speed to allow rapid exchanges

between cells in the network. Very brief durations of electrical signals

(Figure 1d1) allow neural networks to operate at relatively high fre-

quencies and accomplish tasks very quickly (Greene & Oliva, 2009).

Fast network communication at high frequency could in principle be

achieved between connected neurons through radiation of photons,

fluctuations of magnetic field, and passage of electricity. Since photons

and magnetic fields have not yet been documented as the means of

neuron-to-neuron communication, there is only one type of biological

signal suited for the rapid transfer of information within a neural net-

work: electrical signal (Kopell & Ermentrout, 2004; Salkoff, Zagha,

Yuzgec, & McCormick, 2015).

2.4 | Electrical signaling: Arithmetic integration

Electrical signals provide brain cells with a capacity to integrate

signals—add and subtract signal intensities rapidly. In rough terms, the

subthreshold depolarizing synaptic potentials add and hyperpolarizing

synaptic potentials subtract from the “total score” in real time, and on a

very fast time scale measured in milliseconds. Other signaling mecha-

nisms that operate in the brain are also capable of positive and nega-

tive regulation, but these actions occur on a much slower time scale,

seconds and minutes, and they do not follow precisely the rules of

arithmetic summation and subtraction, such as linear summation of

two excitatory postsynaptic potentials (EPSPs) arriving into the cell

body from two dendritic branches (Cash & Yuste, 1998).

2.5 | Electrical signaling: Sustained depolarization

Cortical and hippocampal pyramidal cells, and medium spiny neurons of

the striatum, nucleus accumbens and amygdala, comprise approxi-

mately 85% of neurons in telencephalon, and are the principle neurons
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responsible for sensory perception, cognition, emotions, and motor

output. Interestingly, all of the aforementioned neuron types exhibit

glutamate-mediated dendritic plateau potentials (Milojkovic et al.,

2004; Milojkovic, Radojicic, & Antic, 2005a; Oikonomou, Singh,

Sterjanaj, & Antic, 2014; Plotkin, Day, & Surmeier, 2011). Dendritic pla-

teau potentials produce sustained depolarizations of the cell body,

amplitude �20 mV and duration � 300–500 ms (Figure 1c1, Plateau).

Upon the cessation of the dendritic plateau potential, the cell body

returns to resting membrane potential or a hyperpolarized inactive

state (Milojkovic et al., 2005a). Cortical and hippocampal pyramidal

cells, medium spiny neurons of the striatum, nucleus accumbens and

amygdala, all exhibit two distinct physiological states, depolarized (UP)

state and hyperpolarized (DOWN) state (Wilson, 2008). Such slow

oscillatory activity (Engel, Fries, & Singer, 2001; Neymotin, Lee, Park,

Fenton, & Lytton, 2011; Petersson & Fransen, 2012; Yu & Ferster,

2010;) can facilitate synchronous interactions by biasing neurons to

discharge within the same time frame. Coincident depolarized plateau

states may help the recruitment of neurons into the functional ensem-

ble. The critical time window for the formation of a neural ensemble is

the one over which the individual member cells are in depolarized

states (Figure 1c2, dashed rectangle). Principal cells of cortex and stria-

tum are not spontaneously active. An oncoming barrage of glutamater-

gic projections can move a group of cortical or striatal cell from resting

into sustained depolarized state (UP state). A second group of glutama-

tergic inputs can then initiate APs. Only cells which are already in the

depolarized (UP) state will respond to the second set of inputs, because

it is difficult to initiate firing in cortical and striatal cells during the

hyperpolarized DOWN state (but see Petersen, Hahn, Mehta, Grinvald,

& Sakmann, 2003). In our view, a group of neurons in sustained depo-

larized state constitutes one neural ensemble. From this group, the sec-

ond set of excitatory inputs can recruit neurons into an ensemble of a

higher order; an ensemble comprised of cells engaged in the firing of

APs. Thus, the group of spiking cells is embedded in the group of depo-

larized cells. We think that such “ensemble embedding” may be an

important organizing principle in neural networks.

2.6 | Electrical signaling: Synchronization and binding

Representation of a physical or mental “object” during sensory percep-

tion, as well as sensorimotor coordination, requires binding together of

many brain areas to produce coordinated activity. Binding requires

some type of coordination of neural activity across populations of neu-

rons on various temporal scales. Most popular in discussions of binding

over the past decades, has been rapid binding through fast temporal

coordination at rates corresponding to gamma oscillations in the range

of 40 Hz (binding theory, Singer & Gray, 1995). Variations of this

scheme include coding based on precise spike synchrony and coding

based on timing relative to a slower wave envelope provided by theta

or alpha oscillation. In the present account, we will focus on one type

of synchrony coding which implies multiple cells are firing within a

short period of time (like Figure 1d2). Synchronized spiking activity has

been found in different species and different cortical areas (Bair, 1999;

Buzsaki & Silva, 2012; Salinas & Sejnowski, 2001). For the same level

of firing, a synchronous input is more effective on postsynaptic neu-

rons than asynchronous input (London, Schreibman, Hausser, Larkum,

& Segev, 2002; Schneidman, Freedman, & Segev, 1998). Large-scale

models predict that synchrony occurs due to the reciprocal connectiv-

ity and loops between clumps of neurons (Compte et al., 2003; Durste-

witz, Seamans, & Sejnowski, 2000; Tononi, Sporns, & Edelman, 1992).

In summary, electrical signaling (Galvani, Helmholtz, Adrian, Eccles,

etc.) endows neurons with the means for achieving communication

between specific cells and avoiding their neighbors (Figure 1a2, red

cells), for delivering inputs on specific subcellular compartments, indi-

vidual dendrites, and avoiding neighboring dendrites, for rapid

exchange of messages between two remote areas (a millisecond scale),

and for arithmetic operations (additions and subtractions) using rapid

afferent signals. Electrical signaling gives neurons the ability to shift

quickly between hyperpolarized and depolarized states, back and forth,

remain in depolarized state for several hundred milliseconds, and

achieve binding through slow oscillations at �1 Hz (UP states), or

through synchronized or precise spike timing activity which can reach

frequencies of up to 40 Hz (Singer & Gray, 1995). There are no other

biological signals capable of supporting the aforementioned features,

and hence computational modeling of neuronal electrical signaling is

currently the most promising approach towards understanding how the

brain “walks” and “talks.”

3 | PART 2: SINGLE NEURON

SIGNIFICANCE

The classical point neuron has simple dynamics and no spatial extent. A

more modern concept (alternative abstraction) endows neurons with

large nonisopotential dendritic trees, where individual dendritic

branches behave as semi-independent units (Koch, Poggio, & Torre,

1983; Mel, 1993). The dendritic tree effectively increases the total

number of processing units in the network. The cost of not having

good single-neuron models is potentially high. In studying a neural cir-

cuit, computational neuroscientists naturally draw their concept of the

neuron from the example of transistors used in computers, leading to

imperfect assumptions regarding the capabilities of the various neuron

types that make up the circuit. The large investment of time and money

required to design the integrated large-scale systems performing multi-

ple computations may be wasted if critical capabilities of individual

neurons are omitted from the design (Agmon-Snir, Carr, & Rinzel,

1998; Euler, Detwiler, & Denk, 2002; Lavzin, Rapoport, Polsky, Garion,

& Schiller, 2012; Legenstein & Maass, 2017; Rall & Shepherd, 1968).

3.1 | Spiny neurons

In vivo intracellular recordings have documented UP and DOWN transi-

tions in cortical L5 pyramidal neurons, cortical L4 stellate cells, striatal

medium spiny neurons, and spiny neurons of the amygdala (Brecht &

Sakmann, 2002; Padival, Quinette, & Rosenkranz, 2013; Steriade,

Timofeev, & Grenier, 2001; Volgushev, Chauvette, Mukovski, &

Timofeev, 2006; Wilson & Kawaguchi, 1996). UP states in striatum and

UP states in cortex use different network organizations to achieve the
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same thing: sustained somatic depolarization. Recurrent excitation

between neighboring pyramidal cells and corticocortical projections are

dominant in cortex. Thalamic and cortical efferents, on the other hand,

supply excitation to the striatum. In some nomenclatures, UP and

DOWN states are terms reserved for specific membrane polarization

levels occurring during slow wave sleep, occurring in a rhythmic fashion

(�1 Hz) and involving nearly all cells in a block of tissue (Wilson, 2008).

In the present article, we borrow the term “UP state” from the sleep

studies to describe sustained somatic depolarization 200–500 ms in

duration and �20 mV in amplitude (“neuronal UP state”). There is a

conceptual difference between “cortical UP state” and “neuronal UP

state.” In cortical UP state occurring during slow wave sleep, almost all

pyramidal cells in the area are synchronously depolarized. In the neuro-

nal UP state (proposed here as a cellular mechanism for the recruitment

of pyramidal cells into functional ensembles), only a selected group of

neurons are depolarized, and all members of this depolarized group

code for similar or related objects.

3.2 | Neuronal up state

Neuronal UP state in sleep and neuronal UP state in wake occur in the

same cell: spiny telencephalic neuron. As a rule, spiny central nervous

system (CNS) neurons do not fire APs from a DOWN state. Spiny neu-

rons only fire APs when their cell body is in a depolarized, UP state

(Brecht & Sakmann, 2002; Padival et al., 2013; Steriade et al., 2001;

Volgushev et al., 2006; Wilson & Kawaguchi, 1996). A successful syn-

chronization of the firing activity among spiny neurons in cortex, stria-

tum, and amygdala would thus absolutely require that members of a

neuronal ensemble have overlapping UP states (Figure 1c2, dashed rec-

tangle). Synchronization can be achieved at two levels of precision: [A]

neurons burst within the same window of time (100 ms precision), or

[B] there is individual spike synchrony (1 ms precision). To become eli-

gible for inclusion into a functional neuronal ensemble, a spiny neuron

must quickly and reliably switch from a DOWN to an UP state, remain

in the depolarized UP state as long as necessary, and quickly abort the

UP state when a percept is formed or expired.

Dendritic plateau potential may not be the only cellular mechanism

of sustained electrical activity in individual CNS neurons. Persistent

firing which outlasts the original stimulus can be sustained via two tra-

ditional mechanisms: (i) Recurrent network excitation within microcir-

cuits of CNS neurons (Goldman-Rakic, 1995). (ii) Intrinsic membrane

conductances of neurons which do not require fast synaptic transmis-

sion (Egorov, Hamam, Fransen, Hasselmo, & Alonso, 2002). Activation

of (iii) cholinergic, (iv) noradrenergic, and (v) dopaminergic afferents, as

well as (vi) metabotropic glutamate receptors have also been implicated

with different forms of sustained neuronal activity (Zhang, Cordeiro

Matos, Jego, Adamantidis, & Seguela, 2013). It is important to empha-

size that the majority of the abovementioned cellular mechanisms (i–vi)

are fundamentally based on the glutamatergic transmission on spiny

dendrites. Glutamate-mediated plateau potentials may occur in den-

drites of neurons engaged in persistent activity via recurrent excitation

(Goldman-Rakic, 1995). Glutamate-mediated plateau potentials may

occur upon a norepinephrine surge causing activation of alpha-1

adrenoceptors facilitating glutamate release and subsequent activation

of postsynaptic mGluR5 receptors (Zhang et al., 2013).

Neuronal UP states are known to play an important role in the

consolidation of memory (Marshall, Helgadottir, Molle, & Born, 2006),

but the exact cellular mechanism by which UP states control storage of

information in the brain is poorly understood. A recent study showed

that UP state-induced synaptic weakening of subthreshold inputs,

while preserving synaptic strength of strong inputs (Bartram et al.,

2017). This cellular mechanism causes a near-global synaptic downscal-

ing during slow wave sleep. Subthreshold inputs, which comprise a

majority of inputs, are downsized but a group of selected inputs (strong

enough to bring cell to firing) are preserved unaltered.

3.3 | Dendritic up state

Synaptically-evoked somatic plateau depolarization can be the conse-

quence of glutamate-mediated dendritic plateau potential/spike, also

known as “dendritic UP state” (Antic et al., 2010; Milojkovic et al.,

2005a; Plotkin et al., 2011). The voltage waveforms of dendritic pla-

teau potentials (Figure 2a, basal) were characterized using voltage-

sensitive dye imaging (Milojkovic et al., 2004, 2005a). The somatic pla-

teau rises a few milliseconds after the onset of the dendritic voltage

transient and collapses with the breakdown of the dendritic plateau

depolarization (Milojkovic et al., 2005a). In other words, the cell body

shifts from DOWN to UP state after the generation of the dendritic

plateau potential. It stays in the UP state as long as the dendritic pla-

teau lasts, and it collapses with the collapse of the dendritic plateau

potential. The slow component of the somatic depolarization accurately

mirrors the duration of glutamate-evoked dendritic plateau potential

(Figure 2a, compare voltage signal in dendrite “P” and voltage signal in

soma). This observation is most apparent in experiments in which a

gradually increasing intensity of glutamatergic input was delivered onto

a basilar dendritic branch. At subthreshold glutamate input intensities

the dendritic and somatic depolarizations are both subthreshold. As

soon as the dendritic membrane develops a regenerative dendritic pla-

teau potential (threshold reached in one dendrite), the somatic com-

partment of this neuron reports a neuronal UP state (Oikonomou,

Short, Rich, & Antic, 2012, their figure 3). In summary, the relation

between dendritic plateau potential and somatic UP state is reliable

(Milojkovic et al., 2005a; Milojkovic, Zhou, & Antic, 2007).

3.3.1 | Glutamate

Glutamate processing in neuronal and astrocytic processes (uptake,

packaging, and release) occurs rapidly and vigorously. Spiny neurons in

cortex and striatum are exposed to confluent and repetitive excitatory

drives during intense neural activity. For example, neurons experience

strong barrages of glutamatergic inputs every other second of the

slow-wave sleep period; 1 Hz oscillation (Brecht & Sakmann, 2002;

Padival et al., 2013; Steriade et al., 2001; Volgushev et al., 2006;

Wilson & Kawaguchi, 1996). Whole-cell somatic recordings show that

dendritic membrane responds robustly to repetitive glutamatergic stim-

ulations with no signs of glutamate receptor desensitization or fatigue

(Figure 2b), see also (Milojkovic et al., 2004 their figure 1, Oikonomou
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et al., 2012 their figure 7). Spiny neurons seem properly equipped to

convert a surge of extracellular glutamate into a sustained depolariza-

tion episode, and to do so repeatedly (Figure 2b). Dendritic voltage

imaging showed that sustained somatic depolarizations (Figure 2b, “P”)

are caused by local dendritic plateau potentials (Milojkovic et al.,

2005a,2007). Therefore, the glutamate-mediated plateau is a plausible

membrane mechanism for placing CNS cells in a sustained depolarized

state during intense cognitive operations.

Principal neurons of cortex, hippocampus, neostriatum, and amyg-

dala are highly branched structures hosting numerous glutamatergic

synapses on every thin dendrite (Figure 2c, black arrows). In respect to

glutamatergic synapses, there is a one-to-one relation between donor

(presynaptic axon terminal) and the acceptor (postsynaptic dendritic

spine). This means that in order to map synaptic inputs on a spiny

neuron, it is not necessary to label and visualize presynaptic terminals

(axons). By simply counting and recording the locations of dendritic

spines, one can arrive at a precise density of excitatory glutamatergic

synapses on a given neuron (Larkman, 1991). One distinguishing fea-

ture of all principal spiny CNS neurons involved with cognitive tasks

(cortex, striatum, and hippocampus) is the tendency to make as many

synapses as possible, and extract information from as many neural cir-

cuits as possible (Chen, Rochefort, Sakmann, & Konnerth, 2013). The

number of excitatory glutamatergic contacts on any given CNS spiny

neuron is directly proportional to the complexity of its computational

task. For example, layer five pyramidal neurons in the occipital lobe

(primary visual cortex) have 2–3 times fewer synapses than the equiva-

lent (L5) neurons in the prefrontal cortex (higher association cortex).

The dendritic spine count per cell increases gradually from occipital to

FIGURE 3 Object coding by neural ensembles. (a) An object in the perceptual field (bear) activates pockets of cells in many brain regions.

Each rectangle represents a column, or a segment of a nucleus, devoted to one simple attribute of the object. Brain regions are connected

with axonal projections (gray stripes). The overall activity of a column increases above average if an attribute were detected (pink) – the

column is “net-active.” If an attribute was not detected, the net electrical activity remains at or below the average level (white) – the column

is “net-silent.” (b) Schematic depiction of net active brain regions at cellular resolution. The net silent brain regions (white rectangles in the

previous panel) are omitted from this presentation, for simplicity. Active neurons5 red circles. Inactive neurons5 gray circles. Multiple neu-

ral ensembles (E1–E5) are embedded in the master neural ensemble, which codes for a large, dark and dangerous moving object detected

by sensory system. Member ensembles (E1–E5) may reside in separate brain regions (e.g., cortex, striatum and amygdala). Together the

member ensembles form a master neural ensemble (gray contour). (c) Schematic depiction of four brain areas: cortex, hippocampus, thala-

mus, and amygdala. Each brain area is divided into smaller functional units/segments/columns. Units can be either net-active (pink) or net-

silent (gray). In respect to electrical activity at single-cell level, neurons can be found in three functional states: OFF (gray circle), Prepared

(yellow circle), and Active (red circle)
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parietal, to prefrontal cortex, in the same way the number of the sen-

sory modalities increases from primary, to secondary, to tertiary associ-

ation cortex (Elston, 2003).

Prolonged depolarizations, long decay time-constants and efficient

temporal summations of synaptic inputs on pyramidal neurons are

attributed to glutamate activation of NMDA receptors (Lisman, Fellous,

& Wang, 1998; Wang, Stradtman, Wang, & Gao, 2008). Sustained

depolarizations are in part driven by glutamate spillover (Figure 2a, red

cloud), which keeps dendritic NMDA receptors in the open state for

several hundred milliseconds (Chalifoux & Carter, 2011; Milojkovic

et al., 2007; Oikonomou et al., 2012).

We think that astrocytes are essential for triggering of dendritic

plateau potentials. We envision three synaptic scenarios for dendritic

EPSPs, NMDA Spikes, and Plateau Potentials, respectively. [EPSPs]

EPSPs are generated when glutamatergic inputs are sparse on spiny

dendritic branches. Astrocytic processes, positioned in between dendri-

tic spines, have ample capacity to clean up synaptic glutamate during

sparse and scattered synaptic transmission (Oikonomou et al., 2012,

their figure 1A). [NMDA Spikes] NMDA spikes are generated when

inputs are clustered in a small dendritic segment (Figure 2c, clustered).

Input clustering facilitates summation of the spill-over glutamate, which

can partially overcome the local glutamate uptake in astrocytic process,

resulting in a dendritic NMDA spike (Oikonomou et al., 2012, their fig-

ure 1B). [Plateau Potentials] Plateau potentials are generated when

glutamatergic inputs are both clustered and repetitive, which brings a

lot of glutamate molecules into a restricted space, where synaptic

inputs are functionally clustered. Facing the excessive amounts of glu-

tamate, the astrocytic processes not only stop the glutamate uptake,

but they reverse glutamate uptake and spill out glutamate into the

space surrounding spiny dendritic segment, resulting in a “glutamate

clamp” of the dendritic membrane potential. Recall that the plateau

phase of a local dendritic plateau potential is �50 mV above the resting

potential (Milojkovic et al., 2004), and this voltage is at or near the glu-

tamate reversal potential. In summary, repetitive synaptic stimulation

overcomes the ability of astrocytic processes to clear glutamate from

the extracellular space, allowing some dendritic segments to become

submerged in a pool of glutamate, for a brief period of time. This

dynamic arrangement activates extrasynaptic NMDA receptors located

on dendritic shafts. Strong and sustained activation of AMPA and

NMDA conductances keep the selected dendritic segments in a 50 mV

depolarized dendritic UP state. The aforementioned synaptic scenarios

are still in the domain of speculations. A solid experimental evidence

for the astrocytic role in dendritic plateau potentials awaits methodo-

logical improvements in measuring glutamate transients inside astro-

cytic processes and in the extracellular matrix surrounding dendritic

segments.

3.4 | Two maps of glutamatergic inputs

Glutamatergic inputs can be spatially segregated on one dendritic

branch, one dendritic segment (Figure 2c, Clustered), or they can be

sparsely distributed across the dendritic tree (Figure 2c, Distributed).

Both spatial organizations, Clustered and Distributed, could play impor-

tant roles within the neuron’s computational task.

3.4.1 | Clustered

Theories based on the functional clustering of glutamatergic synapses

on developing and mature dendrites, are gaining momentum (Bono &

Clopath, 2017; DeBello et al., 2014; Kastellakis, Cai, Mednick, Silva, &

Poirazi, 2015; Koch et al., 1983; Larkum & Nevian, 2008; Poirazi et al.,

2003; Ujfalussy, Makara, Branco, & Lengyel, 2017). In parallel with

hypotheses and neuron-modeling, experimentalists try to address this

issue in the laboratory. New experimental results mostly support the

theory of synaptic clusters (DeBello et al., 2014; Fu, Yu, Lu, & Zuo,

2012; Hill, Varga, Jia, Sakmann, & Konnerth, 2013; Kleindienst, Win-

nubst, Roth-Alpermann, Bonhoeffer, & Lohmann, 2011; Makino &

Malinow, 2011; McBride & DeBello, 2015; Palmer et al., 2014; Pinchas

& Baranes, 2013), but see (Chen et al., 2013) for an alternative per-

spective. We proceed by listing several studies in support of clustering.

� Glutamate uncaging experiments determined that approximately 50

synaptic inputs clustered within 100 mm of a thin dendritic branch

need to be activated within 3 ms in order to trigger a regenerative

dendritic potential (Gasparini, Migliore, & Magee, 2004), with similar

ionic composition to glutamate-mediated dendritic plateau potential.

The exact size of synaptic cluster necessary for initiation of local

dendritic plateau potential will vary depending on the branching

order, distance from the cell body and proximity to large or complex

dendritic bifurcations (Larkum, Nevian, Sandler, Polsky, & Schiller,

2009).

� Calcium imaging in neonatal brain slices during spontaneous bursts

of activity show that synapses located near each other on the same

dendritic branch exhibit a higher degree of temporal correlation than

synaptic pairs on different dendrites (Kleindienst et al., 2011). This

highly correlated activity of neighboring synapses could not be

attributed to individual axons forming multiple synapses on short

stretches of dendrite. Furthermore, Kleindienst et al. (2011) showed

that repetitive spontaneous activity in developing neural networks

causes spatiotemporal clustering of functional synapses on den-

drites, and that this process is dependent on the intact function of

glutamatergic NMDA receptors.

� Experience-dependent formation of synaptic input clusters can occur

in juvenile brains and synaptic clusters formed early in life can be

preserved to adulthood (McBride & DeBello, 2015).

� Anatomical studies demonstrate that excitatory connections in cor-

tex are not uniformly distributed across a network but instead

exhibit clustering into groups of highly connected neurons. Individual

pyramidal and spiny stellate neurons in the cat primary visual cortex

project their axons horizontally (up to 4 mm) but the axon collaterals

are often distributed in repeating clusters, with an average periodic-

ity of 1 mm. The clustering pattern is most apparent when the cells

are viewed parallel to the cortical surface (Gilbert & Wiesel, 1983b).

� While sensory deprivation causes homeostatic synaptic enhance-

ment globally on all dendrites, meaningful sensory experiences
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preferentially produce synaptic potentiation onto nearby dendritic

synapses. Such clustered synaptic potentiation is thought to bind

behaviorally relevant information onto dendritic subcompartments

(Brandalise et al., 2016; Bono & Clopath, 2017; Makino & Malinow,

2011).

� Different motor tasks trigger calcium spikes in largely nonoverlap-

ping distal apical tuft branches of the same L5 pyramidal neurons

(Cichon & Gan, 2015). The apparent specialization of individual

branches for a particular motor task (Cichon & Gan, 2015), suggests

that ensembles of neurons specific for one motor task cluster on

one branch, while other task-specific ensembles cluster on other

branches of the same neuron.

� Computational modeling studies suggest that neurons with corre-

lated activities will tend to form clusters of synapses close together

on the dendrites of a target neuron, whereas neurons with unrelated

activities will tend to form synapses that are further apart (Ujfalussy

et al., 2017). Synaptic clustering may increases storage capacity of

CNS neurons (Poirazi & Mel, 2001; Sheffield & Dombeck, 2015).

Information storage in neural tissue could reside primarily in the

selective addressing of synaptic contacts onto dendritic subunits

(clustering), as opposed to the traditional view stating that memories

are primarily encoded in the overall connection strengths between

neurons.

3.4.2 | Distributed

Excitatory synaptic inputs distributed on dendritic branches contribute

little depolarization to the AP initiation zone located in the axon initial

segment (Gulledge, Kampa, & Stuart, 2005). In our view, the most basic

job of the distributed synaptic assortment (Figure 2c) is to extract the

background patterns of network activity. In the schematic representa-

tion, black arrows depict distributed glutamatergic inputs arriving onto

three classes of dendrites in a pyramidal neuron (Figure 2c, tuft,

oblique, and basal). On the time axis (Figure 2d, synaptic input), black

arrows indicate the timing of synaptic triplets arriving in regular time

intervals, as being driven by a hypothetical rhythmic network activity.

A triplet of synaptic inputs (triplet of black arrows) arriving during the

neuronal OFF state is unable to bring the cell to fire an AP (Figure 2d).

An identical triplet of inputs occurring during a responsive, Prepared,

state successfully drives the AP firing (Figure 2d). Glutamate-mediated

dendritic plateau potentials depolarize neuronal membrane potential

(Vm), decrease neuronal membrane resistance (rm) and shorten the

membrane time constant (s). EPSPs with faster rising times have better

chance of reaching the AP voltage threshold because voltage transients

with faster rising times are more powerful activators of the voltage-

gated sodium current (which constitutes AP) than slow voltage transi-

ents (Hodgkin & Huxley, 1990). Due to the voltage dependence of the

sodium channel inactivation gate, a slow ramp potential may reach very

depolarized levels without ever triggering an AP (Hodgkin & Huxley,

1990). This why faster rising EPSPs are more effective triggers of neu-

ronal spiking. A second important factor that renders distributed synap-

tic inputs more efficient in the neuronal Prepared state is depolarization

itself. The glutamate-mediated dendritic plateau potential effectively

shifts the somatic membrane potential by approximately 120 mV (Fig-

ure 2d). At this new depolarized membrane potential (Prepared state),

small voltage transients from distributed synaptic inputs have a better

chance of reaching the AP voltage threshold, compared to the OFF

state, in which the somatic and axonal membranes were 20 mV more

hyperpolarized (Figure 2d). In summary, during Prepared state, small

synaptic inputs, previously ineffective, now gain the ability to drive the

initiation of APs. The Prepared state allows a pyramidal neuron to faith-

fully convert the incoming patterns of synaptic activity into the out-

going patterns of AP firing (McCormick et al., 2003), but see (Petersen

et al., 2003).

The plateau phase of a glutamate-mediated dendritic plateau

potential (Figure 2c, Prepared state) may serve to provide spiny neu-

rons with a window of opportunity, for tuning into the ongoing net-

work activity more robustly (increased firing) and more accurately

(faster membrane response; Figure 2c, Activated state). For example, in

hippocampal “place cells,” the generation of plateau potentials notably

elevates AP firing frequency (Bittner et al., 2015). CA1 pyramidal neu-

ron synapses are facilitating in nature, hence dendritic plateau potential

initiation appears to be a powerful gain modulation of place cell’s out-

put improving both the firing rate and short-term synaptic efficacy of

its axon terminals. Dendritic plateau potentials effectively change the

state of a CNS neuron. Dendritic plateau potentials create a context

for a sharp increase in neuronal output (Grienberger et al., 2015; Lavzin

et al., 2012; Schmidt-Hieber et al., 2017). In hippocampus, the context

will be “place.” In cortex, depending on the area, the context may be a

class of external objects (Figure 3a). The cellular mechanism for bring-

ing spiny neurons into receptive Prepared state is most likely based on

synaptic clustering (Kastellakis et al., 2015; Larkum & Nevian, 2008;

Magee, 2011; Mel, 1993; Shai, Koch, & Anastassiou, 2014). The job of

a clustered synaptic assortment is to bring the target CNS neuron into

a “receptive” Prepared state (Figure 2d). This transition from the inert

and silent OFF state to a depolarized and responsive Prepared state

occurs when the neuronal network fulfils three requirements: (1)

Glutamate-releasing axons converge anatomically onto the dendritic

tree (Figure 4a); (2) These axons become activated synchronously,

within 10–20 ms (Branco & Hausser, 2011; Gasparini et al., 2004), and

(3) The synchronized activation of axons is repeated several times in a

relatively short period of time (100 ms) (Milojkovic et al., 2004; Polsky,

Mel, & Schiller, 2009; Suzuki, Kodama, Hoshino, Izumi, & Miyakawa,

2008). Clustered and repetitive glutamatergic activity is necessary for

buildup of glutamate levels in the extracellular space (Figure 2c, red

cloud) (Chalifoux & Carter, 2011; Oikonomou et al., 2012; Suzuki et al.,

2008).

4 | PART 3: NEURAL ENSEMBLES

In this section, we adopt a notion that brains process and store infor-

mation using neuronal ensembles. A neuronal ensemble is a dynamic

structure composed of synchronously activated neurons engaged in

the same task (Eichenbaum, 1993; Engel & Singer, 2001; Hebb, 1949).

At one instant of time a neuron is a member of one ensemble, while in
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the next instant of time the same neuron participates meaningfully in

the function of another neuronal ensemble (Desimone, Albright, Gross,

& Bruce, 1984; Eichenbaum, 1993; Engel & Singer, 2001; Legenstein &

Maass, 2017; Wilson & McNaughton, 1993). This “time-sharing” fea-

ture of the ensemble-organization principle assures a very high number

of neuronal ensembles in the mammalian brain that can be assigned to

a very high number of specific objects, including perceptual and mental

objects—just as the pixel on your screen is only a tiny piece of an image

and will be lit up for many other images as well.

Complex percepts, such as a black bear shown in Figure 3a, are

composed of sensory details (fragments) including, color, size, orienta-

tion, odor, emotional valence, etc. Each fragment of the sensory experi-

ence is processed by a specific cortical column or specific segment of a

brain region specialized for that fragment of experience, and the combi-

nation of active and nonactive regions thus represents a neural code

for this class of objects (Figure 3a). Both activated and silent brain

regions contribute important clues about the nature (class) and/or

identity of the object. Gathering information from as many regions as

possible is a procedure that serves to reduce ambiguity. Since these

attributes belong to different sensory modalities, and each modality is

hosted by a different brain lobe (in two hemispheres simultaneously), it

is inevitable that large neural ensembles (Figure 3b, master neural

ensembles) are composed of active neurons residing in many remote

brain regions, including the thalamus, primary-sensory, and association

areas of the cerebral cortex, striatum, and amygdala. Hippocampus,

entorhinal cortex, and midbrain are also activated, because the funda-

mental nature of sensory perception demands that current sensory per-

cepts are compared with previously stored ones, as a measure of

novelty (Lisman & Grace, 2005), while hypothalamus, amygdala, and

nucleus accumbens promptly assign emotional valence (Damasio,

1994). Experimental measurements show that the distribution of neu-

rons involved in one functional neural ensemble is not restricted to the

cerebral cortex, but it is likely to include subcortical gray matter (Figure

3c, amygdala and hippocampus) (Brecht, Singer, & Engel, 1998; Ziaei,

FIGURE 4 Recruitment of neurons into neural ensembles. (a) A pyramidal neuron is receiving glutamatergic projections from a brain region

comprised of neurons in three characteristic states of activity (OFF, Pr and Act). A fraction of spiking cells (red) sends their glutamatergic

projections (glut. axons) onto the target pyramidal neuron, clustering on one particular basal branch. A computational task engaging the

neural ensemble (red cell ensemble activity) is poised to recruit the target neuron into a Prepared state (somatic plateau depolarization,

amplitude � 20 mV, duration � 300 ms), via the generation of a local dendritic plateau potential (basal dendrite-orange halo). (b) A target

pyramidal cell is receiving two types of glutamatergic inputs, clustered and distributed. “Clustered inputs” arrive from ensemble E0. Thus,

ensemble E0 has the capacity to recruit our neuron into Prepared state, by triggering local dendritic plateau potential (same as in A). “Dis-

tributed inputs” arrive from various active brain regions (E1–E5) and they scatter across the entire dendritic tree, including basal, oblique

and apical tuft branches. Distributed inputs have the capacity to drive AP firing, but only if E0 had been successful in recruiting this cell

into a Prepared state. (c1) A characteristic somatic voltage waveform applies to each neuronal state, OFF, Prepared, and Active. (c2) Each

neuron transitions between three basic states, depending on the ongoing pattern of excitatory glutamatergic inputs. (c3) A group of Active

cells (red contour) are recruited from a group of Prepared cells (yellow contour). (c4) Cartoon of a brain region shown at “cellular resolution,”

each circle represents one neuron. The ensemble made of neurons in Active state (E_Act, red) is just a subset of the ensemble of neurons in

Prepared state (E_Pr, yellow), which itself is a subset of neurons in the OFF state (E_off, gray)
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Peira, & Persson, 2013). Cortex-wide Ca21 imaging in mice performing

decision-making behavior revealed robust activation of neurons distrib-

uted across the majority of dorsal cortex (Allen et al., 2017). In sum-

mary, these activated groups of cells are widely distributed across

different areas of the brain, each specialized in signaling a different

attribute of the object or different element within the scene (Mount-

castle, 1997; Perrett, Rolls, & Caan, 1982; Singer, 1999; Yu & Ferster,

2010).

4.1 | Master ensembles

The “master neural ensemble” is a functional construct (Figure 3b, gray

contour) that is formed when several member ensembles (E1–E5) are

activated simultaneously. Each member ensemble (subensembles E1–

E5) combines some first-order features (such as two co-occurring visual

orientations) into a second-order feature (such as checkered pattern).

Detection of a checkered pattern on a given object is just one small

step toward recognizing that object. This type of feature-binding is

often performed locally in the primary sensory cortex (Muir, Molina-

Luna, Roth, Helmchen, & Kampa, 2017), hence a subensemble can, in

general, be restricted to a given cortical region. In contrast, master

ensembles are not encapsulated by one brain structure even if the

brain structure is very large and multifaceted (e.g., cerebral cortex). This

idea has repercussions on the actual experimental strategies. For exam-

ple, studying the cellular determinants of face recognition by measuring

electrophysiological responses from the cortical area specialized for

face recognition (fusiform gyrus) might be an inadequate strategy,

because the face recognition task requires an interplay between several

brain structures including at least four visual cortices (V1–V4), fusiform

gyrus, amygdala (Pujol et al., 2009), and thalamic nuclei. It would be dif-

ficult to identify the cellular mechanism of any given computational

task, without physiological data from all these regions. For this reason,

the current trend in experimental neuroscience is development of

experimental recording methods for sampling voltage transients from

many brain cells in many brain regions, simultaneously (Antic, Empson,

& Knopfel, 2016).

As a first approximation, the constellation of active brain regions is

a code for one class of objects, or for one identifiable familiar object.

However, the number of (a) object classes, (b) identifiable objects, (c)

maps, (d) paths, (e) sequences, and (f) strategies that need coding in

everyday life, surpasses the combinatorial power of a few known corti-

cal areas. The new view proposed in the present account states that

within each activated specialized brain area, there is further refinement

of the assembles of active neurons. Not all neurons in the activated

specialized brain region (Figure 3c, pink regions) are put into a Prepared

state (Figure 3c, yellow cells). Then, among the set of neurons in Pre-

pared state, only a selected few cells will go one step further and gener-

ate APs, Active state (Figure 3c, red cells). The question is what cellular

process determines the switch of one cell from the OFF state to Pre-

pared state, and what determines the switch from the Prepared state to

the Active state. We propose that the switch from OFF to Prepared

state is mediated by clustered glutamatergic inputs, while the

generation of APs (Active state) is predominantly the consequence of

distributed synaptic inputs (see below).

4.2 | Time window 200–500 ms

The majority of brain processes related to the feeling of awareness

require that neural activity lasts for 200–500 ms (Wu et al., 2015).

This window of time is perhaps a minimum amount of time needed to

guarantee interactions among multiple brain regions. The 200–500 ms

of sustained firing triggers the awareness of a stimulus either directly

by producing significant glutamatergic output in target brain areas, or

indirectly by allowing the feedforward stream from thalamus to inter-

act appropriately with feedback streams from higher cortical areas

(Cauller, 1995; Engel et al., 2001; Lamme & Roelfsema, 2000; Larkum,

2012; Ro et al., 2003). The 200–500 ms time window of sustained

neuronal depolarization may be the consequence of reverberant activ-

ity closing the loop between past and present features of a moving

object, or by closing the loop between long-term memory traces and

the current sensory percept (reviewed in Tononi & Koch, 2008). Inter-

estingly, the duration of synaptically-evoked somatic plateau depolari-

zations (Figure 2a) is also in the range of 200–500 ms (Milojkovic

et al., 2004; Oikonomou et al., 2012).

4.3 | Global neural workspace

Psychological cognitive experiments suggest that a brain process

exists (best termed consciousness), which enables the unification of

otherwise separate neuronal functions. The unification of separate

neuronal functions may be a serial process in which information trav-

els from a node to a node (less likely) or occurring simultaneously in

multiple nodes (more likely). It was previously suggested that distinct

subsystems (brain regions), are competing for consciousness in the

global workspace (Baars, 2002). This type of “competition” implies the

existence of specific structures or specific networks performing exclu-

sive integrating functions to keep track of the global workspace (Small-

wood, Brown, Baird, & Schooler, 2012). If there were local structures

exclusively responsible for multinetwork integration, they would be

expected to locally mirror activity from all member ensembles that

they integrate. In line with these predictions, electroencephalography

(EEG) and fMRI recordings identified several brain regions containing a

significant number of converging network signals, in contrast to other

regions in the same brain with much simpler function and activity pat-

terns (Braga, Sharp, Leeson, Wise, & Leech, 2013; John et al., 2001;

Mittner, 2013). The neural underpinnings of this putative global brain

architecture, in which specific structures or networks fulfill integrating

functions associated with the global workspace, are currently

unknown. The proposed theories (Baars, 2002; Dehaene et al., 2001;

Engel & Singer, 2001; Llinas & Ribary, 2001; Tononi & Koch, 2008) are

focused on identifying brain regions engaged in the process, but they

do not offer cellular (synaptic and membrane) mechanisms utilized by

individual neurons in this process. Here we propose the embedded

ensemble encoding principle, which employs the ability of dendrites to

trigger local glutamate-mediated regenerative membrane potentials
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(Figure 2a, dend. plateau spike). In order to compete for access into

the global workspace, the candidate brain structures (member ensem-

ble) influence the responsiveness of cells in the higher-order process-

ing area, structures involved in multinetwork integration (Braga et al.,

2013; John et al., 2001). The goal of synaptic integration in this con-

text is to trigger a dendritic plateau potential in the target brain area,

which switches the state of the host neuron from OFF to Prepared.

This is best achieved by clustered synaptic activity (Figure 4a). A “clus-

ter” is just a group of presynaptic axon terminals arriving on the same

dendritic branch and carrying closely related information. Which pre-

synaptic axons converge to one dendritic branch is determined by the

“connectome.” The connectome is based on initial developmental wir-

ing, then later on the life experiences, learning, and memory. The con-

nectome dictates that some cells are better connected with a

particular functional ensemble than others. A functional ensemble is

made of neurons carrying the same informational content in a given

unit of time. The hardwiring is in essence equivalent to the idea of

engrams. The engram can be considered similar to a memory trace,

whereas formation of transient neural ensembles by synchronized AP

firing is similar to memory retrieval or ecphory. The term “ecphory”

applies to a process in which an engram stored in the brain is retrieved

and expressed behaviorally through interactions with strong retrieval

cues, such as sensory input, ongoing behavior, or voluntary goals (Jos-

selyn, Kohler, & Frankland, 2015). Experimental evidence supports the

idea that mental representations, memory storage, and memory retrieval

all operate using neural ensembles. Multiunit electrophysiological record-

ings performed in rodents showed that patterns of neuronal activity that

occurred during the time of encoding are detected hours or days later,

and when they do repeat, they influence the animal’s behavior. Modern

studies based on neuron “tag-and-erase” methods have shown that

silencing the so called “engram” neurons block the memory usage, and

thus established that activation of “engram” neurons is necessary for suc-

cessful retrieval of memories. Conversely, artificial stimulation of the

“engram” neurons induces artificial memory recovery, providing strong

evidence that activation of “engram” neurons is sufficient for retrieval

(reviewed in (Josselyn et al., 2015). The “connectome-favorite” target cells

receive large number of inputs, spatially segregated in their dendritic tree

(clustered inputs, Figure 4b). Only cells in Prepared state will be able to

tune into synaptic activity constantly impinging across the entire dendritic

tree (distributed inputs, Figure 4b) and convert these distributed synaptic

inputs into AP firing output in order to join the network of active neurons.

AP firing patterns are then used for binding (Engel & Singer, 2001).

5 | PART 4: EMBEDDED

ENSEMBLE ENCODING

In this section, we combine: (a) clustered glutamatergic inputs, (b) den-

dritic plateau potentials, (c) sustained depolarization of the cell body, (d)

distributed glutamatergic inputs, (e) temporal coding, and (f) frequency

coding, into one unified principle for transient recruitment of CNS neu-

rons into dynamic neural ensembles. We dubbed this principle: embed-

ded ensemble encoding, EEE theory.

5.1 | Rate coding and temporal coding merge

Neural synchrony with a millisecond precision may be crucial for proc-

essing of information in mammalian brain, underlying many aspects of

cognitive functions including the arousal, sensory perception, atten-

tional selection, and working memory. Current models suggest that syn-

chrony can occur through reciprocal connectivity among groups of

neurons (Bair, 1999; Buzsaki & Silva, 2012; Salinas & Sejnowski, 2001).

The EEE theory modifies this by hypothesizing that, on a particular

cycle of ensemble of neurons in the Active state (EAct), this connectivity

will only be effective among current members of EAct. For the same

level of firing, synchronous input is more effective on postsynaptic neu-

rons than asynchronous input (London et al., 2002; Schneidman et al.,

1998). Such synchronous firing might then not only signal cooperative

binding during this period of an EAct, but would also activate sets of

cells that are not involved in the current EAct to set up a new EAct for

the subsequent period. Additional oscillatory activity associated with

alpha activation will facilitate synchronous interactions by providing a

restricted time frame within the longer period of the plateau depolariza-

tion (neuronal Prepared state) that underlies EAct. In our view, those

oscillatory time intervals are superimposed on the glutamate-mediated

dendritic plateau potentials (Figure 2d, Prepared state) to enhance spike

and burst synchronization. EEE theory is innovative in that it postulates

two different ways to define cell assemblies, rather than the one usually

assumed. The dendritic plateau activation in multiple cells leads to the

ensemble of prepared cells (Figure 4c4, Yellow). Spike generation is per-

missive in members of this ensemble only, which leads to the more

transient production of multiple activity-synchronized embedded

ensembles EAct at different times during the duration of the plateau

(Figure 4c4, Red). EEE theory proposes that larger “Master” ensembles

(Figure 3b) are made of neural subensembles (member ensembles)

simultaneously organized in two planes, space and time: (1) Subensem-

bles as physically distributed entities (Figure 4c4); and (2) Subensembles

as transient, temporal entities—temporal coding embedded in rate cod-

ing (Ainsworth et al., 2012; Fries, Nikolic, & Singer, 2007). These two

related concepts are transformational because they pull together two

concepts (rate vs. temporal coding) that are typically seen to be in oppo-

sition (Ahissar, Sosnik, & Haidarliu, 2000).

5.2 | Bayesian predictive coding

Depolarized prepared state provides bases for choosing one solution

over another, which, in essence, is “Bayesian process.” In statistics, proba-

bility of some event is represented by its frequency. The more often

some phenomenon occurs, the more probable it is. In a Bayesian process,

probability is interpreted as reasonable expectation representing a state

of knowledge, or as quantification of a personal belief. Knowledge is pre-

vious experience “recorded” by glutamatergic connections in the brain

(e.g., long term potentiation (LTP)). Glutamatergic inputs trigger dendritic

plateau potentials (Figures 2 and 4). Personal belief is comprised of

knowledge and emotional state, both supported by the activity of hippo-

campus and limbic system, which project their glutamatergic inputs into

the cerebral cortex, where we conceptualize dendritic plateau potentials
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in this article (Figure 3). Gathering information from as many regions as

possible (Allen et al., 2017) is a procedure that serves to reduce ambiguity

in computational tasks. The neuronal depolarized state (Prepared state)

could be conceived as the Bayesian expectation that is then ready to be

played into by input from either: hierarchically higher brain areas, or hier-

archically lower areas, depending on a specific task.

Bayesian predictive coding theory suggests “how information

about the environment, the individual’s needs, motivational states, and

previous experience are represented” (Clifford, Mareschal, Otsuka, &

Watson, 2015). In Bayesian theory, information streams are theorized

to interact and provide information integration via projections between

hierarchically-lower and hierarchically-higher cortical areas (as well as

from amygdala, thalamus and other areas, Friston, 2008). Higher corti-

cal areas provide predictions or internal models that are then used to

interpret incoming sensory information. Ongoing Bayesian expectation

information processing is nicely explained in the context of the problem

of recognizing a coworker when you see them outside of work. At the

work place, neurons that code for the list of coworkers are kept in a

Prepared state each time a person enters our visual field. Outside the

work place, this preparatory signal is missing, and a coworker may go

unrecognized.

Another good example of the Bayesian expectation task is the

need to identify the same object at almost any angle or perspective

even if that object has never been seen before at that particular angle.

In the multimodal association cortex, the neuronal depolarized state

(Prepared state) could be conceived as the Bayesian expectation that is

then ready to be played into by projections from the primary sensory

areas. Presented with a multitude of choices and pressed to solve com-

plex cognitive tasks, a healthy brain is in a permanent and dire need

for: (a) context and (b) reasonable expectations. Chance favors the pre-

pared mind/neuron. You will not recognize something that you are

entirely unprepared for.

5.3 | Searchlight hypothesis

The “searchlight hypothesis” (Crick, 1984) shares many features with

the present embedded ensemble encoding hypothesis (EEE). First, both

theories are fundamentally grounded in the idea that neural ensembles

are central for brain function. In the searchlight hypothesis, the search-

light appears to be focused on one important object, and it is controlled

by reticular nuclei of thalamus. In the EEE theory, there is no focus on

one object, but rather all (i) possible, (ii) similar, and (iii) reasonable

object vectors are silently turned ON at the same time, waiting for sen-

sory input or memory retrieval signal to pick the best active ensemble

embedded in a much larger ensemble of cells waiting in a depolarized

prepared state. Second, in the searchlight hypothesis the reticular tha-

lamic nucleus is working through von der Malsburg synapses—strong

synapses formed by previous experiences. The EEE theory equally

depends on excitatory connections formed by previous life experiences

and learning. One major difference is that EEE theory specifies that

connections which carry similar information or closely related informa-

tion must impinge on the same dendritic branch. Clustered together in

space and time, the EEE synapses exploit both synaptic and intrinsic

dendritic excitabilities for amplifying afferent signals and converting

excitatory postsynaptic potentials into dendritic plateau potentials,

which, in turn, maintain the cell body in a sustained depolarized state

for 200–500 ms (Milojkovic et al., 2004).

5.4 | Closing remarks

In summary, the same general type of cell recruitment process is used

across the entire telencephalon (cortex, striatum, accumbens, amygdala,

and hippocampus). In any given brain region at any given moment of

time, nerve cells are found in one of the three basic states, OFF, Pre-

pared, and Active (Figure 4c1). Each spiny neuron is capable of transi-

tioning between three basic states, back and forth (Figure 4c2). For the

reasons explained in Figure 2, the proper transition from the neuronal

OFF to the Active state requires one obligatory step, a Prepared state.

Since, the recruitment of neurons into the Active state is most easily

accomplished from neurons in the Prepared state (Figure 4b), the group

of Active cells is going to be a subgroup of Prepared cells (Figure 4c3-4).

The ensemble of Active cells is embedded in the ensemble of Prepared

cells. Active cell is the cell that is spiking, hence providing the substrate

to two types of temporal coding: (1) Rate coding, which will allow bind-

ing with a subset of Prepared cells that reached AP firing threshold; and

(2) Spike-time coding, which will allow binding with a subset of cells in

the Active state (e.g., gamma oscillation).

Among several classes of dendritic spikes (Brandalise et al., 2016;

Golding et al., 2002; Schiller et al., 2000), the glutamate-mediated pla-

teaus (Milojkovic et al., 2004) and apical calcium plateaus (Larkum, Zhu,

& Sakmann, 1999) produce the strongest and longest depolarization at

the AP initiation site and therefore have the most direct influence on

cell firing via two mechanisms: (a) depolarization amplitude approaching

the AP voltage threshold and (b) shortening of the neuronal membrane

time constant. As a result, small synaptic inputs, previously ineffective,

now gain the ability to drive the initiation of APs—“Chance favors the

prepared cell.” Our central hypothesis is that the dendritic plateaus

lead to a prepared neuronal state that favors spike generation, which

results in the emergence of the embedded ensemble of prepared cells

(Figure 4, yellow color). Dendritic plateau potentials and the resulting

plateau depolarizations of the cell body (Prepared state) produce nota-

ble changes in the neuronal electrical behavior (Figure 2d), which are

poised to spill over into the network dynamics, and are therefore too

important to be left out. It would be interesting to examine in computa-

tional models, dynamic features of ongoing network activity that are

gained when model pyramidal neurons, members of the large-scale net-

work, are provided with the ability to produce dendritic plateau poten-

tials (Antic, Acker, Zhou, Moore, & Milojkovic, 2007; Bittner et al.,

2015; Gambino et al., 2014; Plotkin et al., 2011). We hypothesize that

“embedded ensemble encoding” (Figure 4c4) may be the pivotal organ-

izing principle in cortical networks of neurons.
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