
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/280882546

NTW-MT: a Multi-threaded Simulator for Reaction Diffusion Simulations in NEURON

Conference Paper · January 2015

CITATIONS

7

READS

74

6 authors, including:

Some of the authors of this publication are also working on these related projects:

Gates: Circuit Simulation with ROSS View project

SenseLab View project

Zhongwei Lin

National University of Defense Technology

5 PUBLICATIONS   11 CITATIONS   

SEE PROFILE

Carl Tropper

McGill University

84 PUBLICATIONS   980 CITATIONS   

SEE PROFILE

Mohammad Nazrul Ishlam Patoary

McGill University

9 PUBLICATIONS   18 CITATIONS   

SEE PROFILE

Robert A Mcdougal

Yale University

21 PUBLICATIONS   112 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Mohammad Nazrul Ishlam Patoary on 11 August 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/280882546_NTW-MT_a_Multi-threaded_Simulator_for_Reaction_Diffusion_Simulations_in_NEURON?enrichId=rgreq-3076848fc1ea5ce00290f7df2135e73d-XXX&enrichSource=Y292ZXJQYWdlOzI4MDg4MjU0NjtBUzoyNjEzMzAxOTIwMzk5MzhAMTQzOTMxNzM4MjEyMg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/280882546_NTW-MT_a_Multi-threaded_Simulator_for_Reaction_Diffusion_Simulations_in_NEURON?enrichId=rgreq-3076848fc1ea5ce00290f7df2135e73d-XXX&enrichSource=Y292ZXJQYWdlOzI4MDg4MjU0NjtBUzoyNjEzMzAxOTIwMzk5MzhAMTQzOTMxNzM4MjEyMg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Gates-Circuit-Simulation-with-ROSS?enrichId=rgreq-3076848fc1ea5ce00290f7df2135e73d-XXX&enrichSource=Y292ZXJQYWdlOzI4MDg4MjU0NjtBUzoyNjEzMzAxOTIwMzk5MzhAMTQzOTMxNzM4MjEyMg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/SenseLab?enrichId=rgreq-3076848fc1ea5ce00290f7df2135e73d-XXX&enrichSource=Y292ZXJQYWdlOzI4MDg4MjU0NjtBUzoyNjEzMzAxOTIwMzk5MzhAMTQzOTMxNzM4MjEyMg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-3076848fc1ea5ce00290f7df2135e73d-XXX&enrichSource=Y292ZXJQYWdlOzI4MDg4MjU0NjtBUzoyNjEzMzAxOTIwMzk5MzhAMTQzOTMxNzM4MjEyMg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhongwei_Lin2?enrichId=rgreq-3076848fc1ea5ce00290f7df2135e73d-XXX&enrichSource=Y292ZXJQYWdlOzI4MDg4MjU0NjtBUzoyNjEzMzAxOTIwMzk5MzhAMTQzOTMxNzM4MjEyMg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhongwei_Lin2?enrichId=rgreq-3076848fc1ea5ce00290f7df2135e73d-XXX&enrichSource=Y292ZXJQYWdlOzI4MDg4MjU0NjtBUzoyNjEzMzAxOTIwMzk5MzhAMTQzOTMxNzM4MjEyMg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/National_University_of_Defense_Technology?enrichId=rgreq-3076848fc1ea5ce00290f7df2135e73d-XXX&enrichSource=Y292ZXJQYWdlOzI4MDg4MjU0NjtBUzoyNjEzMzAxOTIwMzk5MzhAMTQzOTMxNzM4MjEyMg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhongwei_Lin2?enrichId=rgreq-3076848fc1ea5ce00290f7df2135e73d-XXX&enrichSource=Y292ZXJQYWdlOzI4MDg4MjU0NjtBUzoyNjEzMzAxOTIwMzk5MzhAMTQzOTMxNzM4MjEyMg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Carl_Tropper?enrichId=rgreq-3076848fc1ea5ce00290f7df2135e73d-XXX&enrichSource=Y292ZXJQYWdlOzI4MDg4MjU0NjtBUzoyNjEzMzAxOTIwMzk5MzhAMTQzOTMxNzM4MjEyMg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Carl_Tropper?enrichId=rgreq-3076848fc1ea5ce00290f7df2135e73d-XXX&enrichSource=Y292ZXJQYWdlOzI4MDg4MjU0NjtBUzoyNjEzMzAxOTIwMzk5MzhAMTQzOTMxNzM4MjEyMg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/McGill_University?enrichId=rgreq-3076848fc1ea5ce00290f7df2135e73d-XXX&enrichSource=Y292ZXJQYWdlOzI4MDg4MjU0NjtBUzoyNjEzMzAxOTIwMzk5MzhAMTQzOTMxNzM4MjEyMg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Carl_Tropper?enrichId=rgreq-3076848fc1ea5ce00290f7df2135e73d-XXX&enrichSource=Y292ZXJQYWdlOzI4MDg4MjU0NjtBUzoyNjEzMzAxOTIwMzk5MzhAMTQzOTMxNzM4MjEyMg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohammad_Nazrul_Ishlam_Patoary?enrichId=rgreq-3076848fc1ea5ce00290f7df2135e73d-XXX&enrichSource=Y292ZXJQYWdlOzI4MDg4MjU0NjtBUzoyNjEzMzAxOTIwMzk5MzhAMTQzOTMxNzM4MjEyMg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohammad_Nazrul_Ishlam_Patoary?enrichId=rgreq-3076848fc1ea5ce00290f7df2135e73d-XXX&enrichSource=Y292ZXJQYWdlOzI4MDg4MjU0NjtBUzoyNjEzMzAxOTIwMzk5MzhAMTQzOTMxNzM4MjEyMg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/McGill_University?enrichId=rgreq-3076848fc1ea5ce00290f7df2135e73d-XXX&enrichSource=Y292ZXJQYWdlOzI4MDg4MjU0NjtBUzoyNjEzMzAxOTIwMzk5MzhAMTQzOTMxNzM4MjEyMg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohammad_Nazrul_Ishlam_Patoary?enrichId=rgreq-3076848fc1ea5ce00290f7df2135e73d-XXX&enrichSource=Y292ZXJQYWdlOzI4MDg4MjU0NjtBUzoyNjEzMzAxOTIwMzk5MzhAMTQzOTMxNzM4MjEyMg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Robert_Mcdougal?enrichId=rgreq-3076848fc1ea5ce00290f7df2135e73d-XXX&enrichSource=Y292ZXJQYWdlOzI4MDg4MjU0NjtBUzoyNjEzMzAxOTIwMzk5MzhAMTQzOTMxNzM4MjEyMg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Robert_Mcdougal?enrichId=rgreq-3076848fc1ea5ce00290f7df2135e73d-XXX&enrichSource=Y292ZXJQYWdlOzI4MDg4MjU0NjtBUzoyNjEzMzAxOTIwMzk5MzhAMTQzOTMxNzM4MjEyMg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Yale_University?enrichId=rgreq-3076848fc1ea5ce00290f7df2135e73d-XXX&enrichSource=Y292ZXJQYWdlOzI4MDg4MjU0NjtBUzoyNjEzMzAxOTIwMzk5MzhAMTQzOTMxNzM4MjEyMg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Robert_Mcdougal?enrichId=rgreq-3076848fc1ea5ce00290f7df2135e73d-XXX&enrichSource=Y292ZXJQYWdlOzI4MDg4MjU0NjtBUzoyNjEzMzAxOTIwMzk5MzhAMTQzOTMxNzM4MjEyMg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohammad_Nazrul_Ishlam_Patoary?enrichId=rgreq-3076848fc1ea5ce00290f7df2135e73d-XXX&enrichSource=Y292ZXJQYWdlOzI4MDg4MjU0NjtBUzoyNjEzMzAxOTIwMzk5MzhAMTQzOTMxNzM4MjEyMg%3D%3D&el=1_x_10&_esc=publicationCoverPdf


NTW-MT: a Multi-threaded Simulator for Reaction Diffusion
Simulations in NEURON

Zhongwei Lin
∗

National University of Defense
Technology

Changsha, Hunan, China
zwlin@nudt.edu.cn

Carl Tropper
School of Computer Science

McGill University
Montreal, Quebec, Canada

carl@cs.mcgill.ca

Mohammand Nazrul
Ishlam Patoary

School of Computer Science
McGill University

Montreal, Quebec, Canada
nazrul.eis@gmail.com

Robert A. McDougal
Department of Neurobiology

Yale University
333 Cedar St. New Haven,

Connecticut, USA
robert.mcdougal@yale.edu

William W. Lytton
SUNY Downstate Medical

Center
Brooklyn, NY, 11203, USA

blytton@downstate.edu

Michael L. Hines
Department of Neurobiology

Yale University
New Haven, Connecticut, USA
michael.hines@yale.edu

ABSTRACT
This paper describes a parallel discrete event simulator, Neu-
ron Time Warp-Multi Thread (NTW-MT), developed for
the simulation of reaction diffusion models of neurons. The
simulator was developed as part of the NEURON project
and is intended to be included in NEURON. It relies upon
a stochastic discrete event model developed for chemical re-
actions. NTW-MT is optimistic and thread-based, in which
communication latency among threads within the same pro-
cess is minimized by pointers. We investigate the perfor-
mance of NTW-MT on a reaction-diffusion model for the
transmission of calcium waves in a neuron. Calcium plays a
fundamental role in the second messenger system of a neu-
ron. However, the mechanism by which calcium waves are
transmitted is not entirely understood. Stochastic models
are more realistic than deterministic models for small popu-
lations of ions such as those found in apical dendrites. To be
more precise, we simulate a stochastic discrete event model
for calcium wave propagation on an unbranched apical den-
drite of a hippocampal pyramidal neuron. We examine the
performance of NTW-MT on this calcium wave model and
compare it to the performance of (1) a process based op-
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timistic simulator and (2) a threaded simulator which uses
a single priority (SQ) queue for each thread. Our multi-
threaded simulator is shown to achieve superior performance
to these simulators.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—parallel programming ; I.6.8 [Simulation and Mod-
eling]: Types of Simulation—parallel, distributed, discrete
event

General Terms
Algorithms, Design, Performance

Keywords
Stochastic Neuronal Simulation, PDES, Multiple Thread

1. INTRODUCTION
The human brain may be viewed as a sparsely connected

network of neurons [3] containing approximately 1014 neu-
rons. Each neuron receives inputs from thousands of den-
drites and sends outputs to thousands of neurons by means
of its axon.

The membrane of a neuron contains channels which selec-
tively control the flow of ions (primarily sodium, potassium,
and calcium) through the membrane. Movements of ions
through these channels is by (1) diffusion from a higher con-
centration of ions or (2) by pumps which are dependent on
the voltage drop across the membrane. Electrical models
for neurons [14] can be constructed using the well-known
laws of electricity (Ohm, Kirchkoff, capacitance). However,
these electrical models only provide a limited view of neu-
ronal activity since there are ions (notably calcium) which
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function as information messengers. In order to develop re-
alistic models of a neuron, it is necessary to develop models
which account for the movement and functioning of these
messengers.
The combination of chemical reactions within a cell with

the diffusion of ions through the membrane can be modelled
as a reaction diffusion system and simulated by (parabolic)
partial differential equations [3, 14]. However, a continuous
model is not appropriate for a small number of molecules.
Stochastic model is a far more realistic and accurate repre-
sentation [23, 20] for this sort of situation.
It is well known that a system consisting of a collection of

chemical reactions can be represented by a chemical master
equation, the solution of which is a probability distribution
of the chemical reactants in the system [23]. In general, it
is very difficult to solve this equation. In [9] a Monte Carlo
simulation algorithm called the Stochastic Simulation Algo-
rithm (SSA) is described. Under the assumption that the
molecules of the system are uniformly distributed, the algo-
rithm simulates a single trajectory of the chemical system.
Simulating a number of these trajectories then gives a pic-
ture of the system. The Next sub-volume Method (NSM) [8]
is an extension of the SSA which incorporates the diffusion
of molecules into the model. The NSM partitions space into
cubes called sub-volumes, and it can be applied to PDES
by representing sub-volumes as Logical Processes (LP) [24].
Diffusion of ions between neighboring sub-volumes is repre-
sented as events. NTW-MT relies on the NSM algorithm.
NEURON [4, 3] is a widely used simulator in the neuro-

science community. It makes use of deterministic simula-
tors for the reaction diffusion model [15] and for electrical
models. We are collaborating with the NEURON group;
our intention is to develop parallel discrete event simulators
suitable for simulating the reaction diffusion models. It is in-
tended that our simulators will be integrated into NEURON.
We previously developed a process based simulator, NTW
[18], which makes use of a multi-level queue. We verified
and examined its performance on a Calcium buffer model
and a predator prey [21] model. The queueing structure de-
scribed in this paper and the one in [18] are outgrowths of
the multi-level queue described in XTW [27].
The remainder of this paper is organized as follows. Sec-

tion 2 describes the related work, section 3 is devoted to the
architecture and algorithms of our simulator, section 4 de-
scribes our experimental results. The conclusion and future
work are presented in section 5.

2. RELATED WORK
[6] points out that a conservative synchronization algo-

rithm for parallel simulation will perform poorly because of
the zero-lookahead property of the exponential distribution
and the fact that a dependency graph of the reactions is
likely to be highly connected and filled with loops. This
indicates that an optimistic synchronization algorithm such
as Time Warp is preferable. [25] presents an experimental
analysis of several optimistic protocols for the parallel sim-
ulation of a reaction-diffusion system. [13] uses NSM in an
optimistic simulation along with an adaptive time window.
[12] compares the performance of spatial τ -leaping with that
of NSM and Gillespie’s Multi-particle Method (GMPM) in
terms of speedup and accuracy.
There are two main schemes for the storage of the pending

events for each thread, a global queue and separated (dis-

tributed) queue. In a global queue, a number of threads
(Processing Elements, PE) share a single priority queue.
This achieves load sharing at the expense of contention at
the queue, e.g. threaded WARPED [16]. The main draw-
back of this scheme is too much contention on the global
queue [5]. In a separated queue, each worker thread has
its own priority queue and only processes events from this
queue. However, there are still concurrent operations on the
priority queue arising from other threads in the same pro-
cess. In order to avoid locking the contents of individual
LPs, each LP is mapped to only one specific thread. This
may lead to a load imbalance, so it is necessary to balance
the workload for threads and processes. [5] uses a sepa-
rated queue and proposes a global scheduling mechanism to
balance the workload between the threads in the same pro-
cess. A global scheduling mechanism was employed for load
balancing, decreasing the contention and improving perfor-
mance. However, a global schedule still allows simultaneous
processing of events at individual LPs, necessitating a lock-
ing mechanism. ROSS-MT [10] also employs a separated
queue and uses an input queue to store the events sent from
other threads. Contention on the input queue remains high.
A hybrid scheme combines the above two schemes by creat-
ing several priority queues within one process and mapping
a subset of the threads to a single queue, as described in [7].

3. ARCHITECTURE
We employ a separated priority queue scheme in our ar-

chitecture. The simulator architecture is depicted in figure
1. One of the processes is a controller, exercising global
control functions (GVT computation (Mattern’s algorithm)
and load balancing). The remaining processes are worker
processes which process the events at the LPs which reside
in the process. Each worker process contains a communica-
tion thread and several processing threads. All of the worker
processes have the same number of threads.

The communication thread sends and receives messages
for a process. Processing threads cannot send or receive
messages. After initialization, the communication thread
receives messages from shared memory, in which case the the
message is from a family process residing in the same node
(see section 3.3) or via MPI from remote nodes. Control
messages are the first messages to be processed. LPs then
schedule external events by placing them into the send buffer
of the communication thread. To avoid contention for this
buffer, it is partitioned into m segments, where m is the
number of processing threads. The ith processing thread
can write only into the ith segment. The communication
thread scans the segments in the buffer and then sends out
the messages. At present, the communication thread sends
only one message per segment (a fairness policy).

LPs are partitioned into m × n subsets, where n is the
number of worker processes and m is the number of pro-
cessing threads. Each subset is mapped to a processing
thread. Each processing thread includes a LP List which
stores the LPs associated with the thread, a Thread Event
Queue (TEQ), a Thread Memory Allocator which is involved
in the Memory Management and a Thread Function. The
Thread Function is responsible for processing the events,
and is portrayed in figure 2.

An event has two timestamps, the receive time and the
send time [11]. The events in the priority queue are sorted
by their receive time. There are two types of events: internal
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Figure 2: Processing sequence of a PE.

events which are scheduled by internal processing threads
and external events from external processing threads. As the
processing threads share the same memory space, internal
events use a pointer to identify LPs. A PE can use this
pointer to access the LP directly. External events use an
integer identifier to represent LPs. They are converted into
internal events upon receipt by a communication thread and
are then inserted into LPs.

3.1 Multi-Level Queuing
Every thread in a process can access any priority queue in

the same process, which can cause excessive contention [7].
To further aggravate matters, during a roll-back processed
events with a timestamp greater than the receive time are
re-enqueued in the priority queue. Two ways are used to
alleviate this contention (1) decreasing the probability by
which a few threads can access the same queue and (2) de-
creasing the cost of a single operation on a queue.

Consider the example in figure 3. In a stochastic neu-
ronal simulation, the virtual time increment can vary from
0 to a large value. The diagram in figure 3 depicts 6 LPs
(rounded rectangles) which are distributed over three pro-
cesses (dashed rectangles). The number in each LP is the
Local Virtual Time (LVT) of the LP (also used to identify
the LP). Each arrow represents an event. The number on
each arrow is the timestamp of the event (receive time, send
time).

In figure 3 event (12,10) is a straggler at LP 15, and the
dashed-lined-events at LP 16 are pending events. LP 16 has
four pending events which would be stored in a queue. One
may notice that it is not necessary to store and sort all four
events in the TEQ- only event (18,14) needs to stay in the
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(20, 13) (19, 13.5)

(18, 14) (27, 15)
(15, 14)
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(23, 21)

(19, 11)
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Figure 3: This example shows 6 LPs (rounded rect-
angles) which are distributed over three processes
(dashed rectangles). Some are located in the same
processing thread(an ellipse). The number in each
LP is the local virtual time of the LP, and is also
used to identify the LP. Each arrow indicates an
event.The number on each arrow is the timestamp
of the event (receive time, send time). Some LPs
and events are omitted.

TEQ. There are several reasons for this: (1) some insertions
in the TEQ can be omitted, decreasing the probability of
contention. (2) the size of the TEQ can be controlled and the
cost of an operation eliminated. Events (20,13) and (18,14)
would be cancelled due to the roll-back of LP 15, hence
sorting them is wasteful. (3) to cancel an event which would
not access the TEQ decreases the probability of contention.
Suppose that (1) a PE holds x LPs, numbered from 0 to
x−1 (2) Si is the Pending Event Set (PES) of LPi and that
the events in Si are in non-decreasing order in receive time.
The minimum pending event of LPi is minPEi. It is easy to
prove that minPE in PES is equal to the min{minPEi, i =
0, 1, · · · , x − 1}. Therefore the PE only needs to compare
each minPEi to find minPE. This indicates that any LP
only needs to have one representative event in TEQ. The
remaining events are stored in the LP Event Queue (LPEQ).
Each LP has a LPEQ and all the LPEQs are linked to the
corresponding TEQ.
In a three-dimensional environment, space is partitioned

by a mesh grid, resulting in a maximum of 6 neighbors for
each LP. Molecules diffuse through channels between these
neighbors. We use an input channel to receive events from a
neighbor and store them in an Input Channel Event Queue
(ICEQ). All of the ICEQs are linked to the corresponding
LPEQ.
To control the size of a queue, a lower level queue can

only submit an urgent event (definition 1 below) to an up-
per level queue. A lower level queue records the unprocessed
events which have been submitted to an upper level queue,
and checks to see if an event is urgent when it receives it.
Every input channel has a variable submit of event pointer
which refers to the lower bound of unprocessed events which
have been submitted to the LPEQ. Every LPEQ has a stack
structure submitTrack which traces the unprocessed events
which have been submitted to its TEQ. At the input chan-
nel level, urgency is checked by comparing the receive time
of event ex and submit of this channel. Because the LPEQ
receives events from several input channels, it may submit

several events to the TEQ, and there may be several pointers
in submitTrack, hence urgency is checked by comparing the
receive time of event ex and the top element of this stack.
In a reaction-diffusion simulation an event can have smaller
receive time then a predecessor, thereby leading to the cre-
ation of an urgent event (see the example below).

Definition 1. An event eix in a queue qix at level i is urgent
if its receive time is less than the receive time of any events
ejy in its upper level queue qjy at level j (j > i).

At this point, we have three level queuing architecture, as
shown in part b of figure 1. The queuing works as follows.

• In the initialize phase, the TEQ, LPEQ and input chan-
nels are constructed, submitTrack of LPEQ is empty and
submit of input channel is set to 0. Each LP schedules
an initial event to itself and adds it to its TEQ and then
add the initial event to submitTrack.

• Any processing thread and communication thread can in-
sert events into a LP. To insert an event e, a thread first
identifies the target LPx by routing and checks if it is lo-
cated in the same process. If not, this event will be added
to the send buffer of the communication thread. If so it
is inserted in the target LP as follows.

1. Apply memory, find the target LP LPx, fill in the
Targetpointer field of this event by the pointer to LPx.

2. Determine the input channel channelx, fill in the Chan-
nel Pointer field of this event by the pointer to channelx,
check whether it is urgent. If it is not urgent, insert
it into ICEQ. Otherwise submit it to the LPEQ and
update submit.

3. At the LPEQ level, check urgency. If it is not urgent,
insert it into LPEQ. Otherwise submit it to TEQ and
insert its pointer to the top of submitTrack.

4. At the TEQ level, insert this event into the TEQ.

• After processing an event from input channel channels,
a PE fetches an event from channels to make sure that
there is a representative in the LPEQ, updates submit of
channels, then inserts the new event in the LPEQ. At the
level of the LPEQ, this PE checks submitTrack and the
smallest event in LPEQ at that time to determine whether
to submit an event to the TEQ or not.

In the example in figure 3, LP 16 has two neighbors LP
15 and 17. Event (19, 11) comes from LP 15, arriving at
channel [16, 15] (a channel is marked in the format [host
LP, source LP]), finds submit of this channel to be 0, and
is submitted to the LPEQ of LP 16, submit is set to (19,
11); submitTrack of LPEQ 16 is empty. Then this event is
submitted to TEQ, the pointer to (19, 11) is pushed at the
top of submitTrack and the insertion of (19, 11) now ends.
It is in the TEQ, where it at time T1. Then event (20, 13)
arrives at channel [16, 15]. It is not urgent and thus stays
in ICEQ. This insertion ends at time T2. Event (18, 14)
arrives, and is found to be urgent for channel [16, 15], then it
is submitted to the LPEQ; it is also urgent for LPEQ 16, and
is submitted to the TEQ. The top of submitTrack becomes
the pointer to event (18, 14) at time T3. Event (18.5, 16)
from LP 17 arrives at channel [16, 17], finds submit to be
0, and is submitted to LPEQ 16. submit is set as a pointer
to (18.5, 16) at time T4. The successive insertions depend
upon the relationship of the above time points.
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• T4 < T1, this implies this event arrives before any events
from LP 15. (18.5, 16) will be submitted to TEQ, (19, 11)
will stay at LPEQ 16, (18, 14) will be submitted to TEQ,
(20, 13) stays at ICEQ [16, 15]. top of submitTrack is
pointer to (18, 14) followed by pointer to (18.5, 16).

• T1 < T4 < T2, event (18.5, 16) is urgent and will be
submitted to TEQ. Event (18, 14) is also urgent when it
arrives at LPEQ 16. In this case, there are three events,
(18, 14), (18.5, 16) and (19, 11), in TEQ.

• T2 < T4, event (18.5, 16) is not urgent when it arrives at
LPEQ 16, thus stays at LPEQ 16. Two event, (19, 11)
and (18, 14) are submitted to TEQ.

3.2 RB-Message
XTW [27] uses one RB-message to cancel incorrect events

instead of sending a series of anti-messages, eliminating the
need for an output queue at each LP thereby reducing the
overhead of a roll-back.
When a LP receives a straggler, it rolls back to a point

in time prior to the time of the straggler and then processes
the straggler, as shown in figure 4. A LP does not store
the processed events which were scheduled by itself. Pro-
cessed events scheduled by other LPs are stored in the appro-
priate Input Channel Processed Queue (ICPQ). Note that
the straggler may be not the processed event with smallest
event because a processed event may have been sent from
the TEQ.

rollback_straggler(rbt, straggler)

search the latest valid state s with timestamp t1

Recover LVT to t1, recover state to s

For every channel, recover events with receive

timestamp greater than t1 to ICEQ from ICPQ

Send RB message if necessary

ICEQ.head.rt

< submit.rt
If ICEQ is not empty, submit smallest

event to LPEQ and update submit

yes

no

Return the smallest event of this LP

Straggler is the smallest event of this LP

At least 1 event is

added into LPEQ

no

Re-enqueue straggler into LPEQ

yes

Dequeue the smallest event from LPEQ

Figure 4: Steps for roll-back caused by straggler,
head is the smallest event in any queue. rt(st) is
receive time (send time).

In the above example, the message (12, 10) sent by LP
10 to LP 15 is a straggler, so LP 15 should roll back to
a point in time before time 12. Suppose a state at 11.5
is found, and the states with timestamp greater than 11.5
are released. After that, LP 15 recovers processed events

with timestamp greater than 11.5, finds the smallest event
and sends RB-messages to its neighbors, LP 16 and LP 25.
However, it is not really necessary to send a RB message to
every neighbour; we use a variable ScheduleHistory (SH)
[18] in the input channel in figure 1. SH records the upper
bound of the send times of events sent to a LP. The use of SH
can avoid sending unnecessary RB messages. For example,
the local virtual time of LP i is 100, its input channel[0].SH
is 80 (this indicates that it did not schedule any event to this
neighbour after 80) and input channel[1].SH is 90. Assume
that LP i receives a straggler and needs to roll back to 88.
It is easy to assert that a RB message should be sent to
the neighbour related to input channel[1] whereas there is
no need to send a RB message to the neighbour related to
input channel[0].

RB-messages has a higher priority RB PRIORITY, a neg-
ative real constant, than other normal events, the send time
of RB-message is set as the present LVT of the LP which
sends it. A RB-message (RB PRIORITY, trb) sent from
LP x to LP y announces that LP x has rolled back to trb,
then the pre-sent events with send time greater than trb be-
comes invalid. LP y follows the steps in figure 5 to process
RB-messages.

RB_MSG processing(rb)

rb.channel.ICPQ

.st.tail < rb.st
yes no

Remove events with send time

greater than rb.st in ICEQ and LPEQ
Search cut-point in

rb.channel.ICPQ

There are

invalid events

in TEQ

return

no

Remove invalid events in TEQ

yes

Cut-point

found

yes

Rollback to a point prior to Rbt

Rbt = cut-point.rt Rbt = rb.st

no

rb.channel.submit

.st >= rb.st

no

Rb.channel submits its smallest

event to upper queue

yes

LPEQ submits its smallest event to TEQ if necessary

Figure 5: Steps for processing a RB-message, tail
refers to the element with the greatest timestamp
in the queue.

The processing of a RB-message depends upon whether
or not invalid events have been processed.

• Left branch. The invalid events have not been processed.
These events are removed and submit event to upper level
queue if necessary. In the above example, a RB-message
(RB PRIORITY, 12) will sent by LP 15 to LP 16. Events
(20, 13) and (18, 14) become invalid, while event (19, 11)
is valid. The invalid events are removed from the queue in
LP 16. This kind of RB-message does not interfere other
LPs, for no successive roll-back will be triggered, thus we
call it friendly RB-message.

• Right branch. The invalid events have been partly or to-
tally processed. A roll-back is triggered. The send time
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of the RB-message is used to find the cut − point in the
ICPQ, such that all events with a send time larger than
the send time of the RB-message are after the cut-point.
The LP sets the rollbacktime equal to the receive time of
the first event after the cut − point. In the above exam-
ple, a RB-message (RB PRIORITY, 12) will be sent by
LP 15 to LP 25, the events (19, 13.5) and (27, 15) become
invalid while (19, 13.5) has been processed. A secondary
roll-back is triggered and LP 25 follows steps in figure 6
to handle the roll-back.

int Rollback_rb(rbt, st)

search the latest valid state s with time t1

Recover LVT to t1, recover state to s

channel c received

this RB message

Remove all of the events with send

time greater than st in

ICEQ, ICPQ, LPEQ and TEQ

yes

Recover events with receive time

greater than t1 to ICEQ from ICPQ

no

Send RB message if necessary

submit.st

< st

no

ICEQ.head.rt

< submit.rt

no

If ICEQ is not empty, submit smallest

event to LPEQ and update submit

yes

Recover events with receive time

greater than t1 to ICEQ from ICPQ

Return nRecovered indicating the number of events recovered to LPEQ

yes

If ICEQ is not empty, submit smallest

event to LPEQ and update submit

Figure 6: Steps for roll-back triggered by a RB-
message.

The basic operation of RB-rollback is the same as that of
a roll-back triggered by a straggler, except for the recovery
of processed events. The channel which received the RB-
message removes all of the events with a send time greater
than the send time of the RB-message. Otherwise it moves
the processed events with receive time greater than rollback
time from ICPQ to ICEQ. Sending a RB-message is neces-
sary for either type of roll-back. The ScheduleHistory of
channel [25, 20] is 21. Suppose that the first event after
the cut − point is (22, 10.5). LP 25 will roll back to time
22, because 22 > 21 and no RB-message will be sent from
LP 25 to LP 20. If the rollback time is 19, a RB-message
(RB PRIORITY, 19) will be sent to LP 20 by LP 25, and
LP 20 applies the above steps to process this RB-message
again. Our use of multi-level queue and RB-message is an
extension of [27].

3.3 Hybrid Communication
We employ shared memory to shorten the delay of message

passing because communication is the main performance

Figure 7: Intracellular calcium dynamics.

bottleneck for PDES applications. We call the worker pro-
cesses located in the same node a family. As shown in part
a of figure 1, suppose there are c processes in a node, the
shared memory is partitioned into c segments, numbered by
0, 1, · · · , c− 1, each family process uses one of the segments
as its receive buffer. Each segment employs a semaphore
to control the access to it. For example, when process 0 is
about to send data to its family member process 2, process 0
needs to hold the semaphore for process 2, then find room to
write the data, after which it releases the semaphore when
writing is finished. When receiving data, process 0 must first
hold the semaphore and then receive the data, after which
it releases the semaphore.

Together, we have three-level communication mechanism,
communication between threads within same process is com-
pleted by pointers, by shared memory for processes in the
same node, and by MPI for remote processes.

4. EXPERIMENTAL STUDY

4.1 Model
As previously mentioned, Calcium plays an important role

in regulating a great variety of neuronal processes. A no-
table example of intracellular calcium dynamics is the Ca2+-
induced-Ca2+-release (CICR) [2, 19] which controls a di-
verse array of cellular processes including fertilization, gene
transcription, muscle contraction and even cell death. Fig-
ure 7 describes the CICR flow.

There is high level of calcium stored in the endoplas-
mic reticulum (ER) of a neuron. Inositol 1,4,5-triphosphate
(IP3) receptors are distributed on the surface of the ER.
These receptors can be activated when the Ca2+ and IP3 in
the cytosol reaches a certain concentration. The IP3 recep-
tor acts to open a channel, and the ER then releases Ca2+

into the cytosol through this channel, thereby elevating the
concentration of Ca2+. Both the IP3 and Ca2+ can dif-
fuse freely. Generally the concentration of cytosolic Ca2+

and IP3 are low and the channels are closed. If a neuron
receives a signal from adjacent neurons, the G-protein on
the cell membrane releases IP3 into cytosol, some receptors
are activated, leading to a local elevation of cytosolic Ca2+.
The IP3 and the newly-generated Ca2+ diffuse to an ad-
jacent region and activate the IP3 receptor channels there.
The concentration of cytosolic Ca2+ increases, and a wave
begins to spread. Because of a difference in the concentra-
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tion (the concentration gradient) of calcium along the ER,
calcium ions leak into the cytosol at a low rate, increas-
ing the concentration of calcium in the cytosol. There are
pumps on the surface of the ER (known as SERCA pumps)
which pump the calcium back into ER at a rate related to
the concentration gradient, causing the opened channels to
close.
A deterministic model has been developed in NEURON

[17]. Based on this model we developed a discrete event
model and simulated it. In our experiments we only take
the IP3 and Ca2+ into account. As the real CICR model is
complex we simplified it by assuming (1) the IP3 receptor
opens when the concentration of IP3 and Ca2+ are both
higher than some respective threshold (2) an opening IP3
receptor channel will close for a period of time determined
by an exponential distribution. The reactions include:

ER Release: Ca2+
er

krelease−−−−−→ Ca2+
cyt,

krelease = νIP3R m3 n3 ([Ca2+
er ]− [Ca2+

cyt])

ER Leak: Ca2+
er

kleak−−−−→ Ca2+
cyt,

kleak = νleak ([Ca2+
er ]− [Ca2+

cyt])

SERCA Pump: Ca2+
cyt

kpump−−−−→ Ca2+
er ,

kpump =
νSERCA [Ca2+

cyt]
2

k2
SERCA

+[Ca2+
cyt]

2

where Ca2+
er refers to Ca2+ in ER, Ca2+

cyt refers to Ca2+

in cytosol, [•] refers to the concentration of the correspond-

ing species •, m = [IP3]
[IP3]+kIP3

, n =
[Ca2+

cyt]

[Ca2+
cyt]+kact

, kIP3 , kact,

νIP3R, νleak, νSERCA and kSERCA are given constant pa-
rameters, the value can be found in [17]. Ca2+

er can only
diffuse within ER, cytosolic Ca2+ and IP3 can only diffuse
within cytosol.
We made use of the following scenario. At first, both

cytosolic Ca2+ and IP3 concentrations are low. Hence most
of the IP3 channels are inactive, and only leaks and SERCA
pumping take place. IP3 molecules are injected into some
sub-volumes in the middle of a dendrite. The cytosolic Ca2+

concentration achieves a threshold level due to the leak, the
IP3 receptor channels begin to open and the ER release is
triggered.

4.2 Geometry
We simulate the intracellular Ca2+ wave in an unbranched

apical dendrite of a hippocampal pyramidal neuron (length:
1000 µm, diameter: 1 µm). An introduction to pyramidal
neurons can be found in [22], Watanabe et al. modulate
the calcium wave propagation in the dendrites and to the
soma of rat hippocampal pyramidal neurons [26]. The hip-
pocampus is a small region of the brain that resembles a
seahorse and plays a role in learning and memory, figure 8
shows a three-dimensional view of the neuron. The neuron
is partitioned into mesh grids, and each grid is taken to be
a sub-volume. We select 14749 sub-volumes with a distance
of less than 50 µm from the middle, and the length of each
sub-volume to be 0.5 µm. The sub-volumes are evenly dis-
tributed among the processing threads.

4.3 Platform
We use two platforms. One machine (PEPI) is a cluster

with 4 Intel(R) Xeon(R) E7 4860 2.27 GHz, 10 cores per pro-
cessor, 1 TB memory, with Linux 2.6.32-358.2.1.el6.x86 64,

 

Figure 8: Pyramidal neuron in a three-dimensional
view.

Red Hat Enterprise Linux Server release 6.4 (Santiago). The
other is the SW2 node (of Guillimin), consisting of two Dual
Intel(R) Sandy Bridge EP E5-2670 2.6 GHz CPUs, 8 cores
per processor, 8 GB of memory per core, and a Non-blocking
QDR InfiniBand network with 40 Gbps between nodes. The
node runs Linux 2.6.32-279.22.1.el6.x86 64 GNU/Linux.

4.4 Performance
The performance of NTW-MT is compared to two other

simulators. One is a process-based parallel simulator which
uses a controller process to calculate GVT. Memory op-
erations employ the standard new and delete mechanism.
A thread+SQ version uses threads but does not use the
MLQ algorithm. Each thread uses a single priority queue
to hold the pending events. We know from [27] that RB
messages result in superior performance when compared to
anti-messages and do not compare the simulator to one with
anti-messages.

We use an STL multi-set as the implementation of the
priority queue. The mean access time to this multi-set is
proportional to its size.

In the Thread+SQ case, when 32 processing threads are
used, a roll-back avalanche occurs. This phenomenon is
much more serious for the process-based version, which es-
sentially cannot get beyond 8 processes. We consider these
results inaccurate in terms of performance and do not in-
clude them.

The placement of processing threads is an important is-
sue, it affects the memory usage and communication. We
consider three placements- (1) within process in which all
of the processing threads are in the same process, thereby
no interprocess events; (2) within node in which processes
exchange messages via shared memory; (3) hybrid respec-
tively which makes use of MPI for remote processes and the
preceding techniques otherwise.

4.4.1 within Process Mode
We run this experiment in the PEPI machine by starting

up two processes, one controller and one worker process, and
creating the processing threads within the worker process.

From figure 9, we can see that the execution time de-
creases with an increase in the number of processing threads.
The process-based version is slowest because each process
receives and sends events in the main processing loop and
communication is time-consuming.

When fewer then 8 processing threads are involved in
the simulation, the thread+MLQ version is slower then the
thread+SQ version. The greatest difference (about 13%)
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Figure 9: Execution time with all of the process-
ing threads running within one process in the PEPI
machine.

occurs when one processing thread is used. Because the
essence of MLQ is the dispersion of contention on a single
queue, it is of no use if there is no contention.
Consider the 1 processing thread case-almost all of the

insertion of events end at the TEQ level, figure 12 illustrates
this. Checking urgency in the input channel and the LPEQ
level cause unnecessary overhead. When more threads are
used, contention for the TEQ takes place. One LP may
receive more than one event, the probability of contention at
the SQ increases and the MLQ becomes more efficient. The
thread+MLQ version is superior to the thread+SQ version
when more than 8 processing threads are used, and finally
achieves a speedup of 9 with 32 processing threads used,
compared to the 1 processing thread case.
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Figure 10: Roll-backs in within process mode in the
PEPI machine.

Roll-backs increase for all of the versions in figure 10.
The process-based version suffers more roll-backs (25%-35%)

than the other two versions. The roll-back of the two thread
version is almost same in the few thread cases, while the
MLQ version experienced fewer (around 18%) roll-backs than
the SQ version. The events are inserted into thread queue
directly in the SQ version resulting in a greater delay.
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Figure 11: Maximum size of TEQ in within process
mode in the PEPI machine.

The size of the TEQ scales well-it contains no more than
1.5 times the average number of LPs per processing thread.
Hence the access time for the TEQ is well controlled, see
figure 11.
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Figure 12: Hit rate in within process mode in PEPI
machine.

In the MLQ algorithm, an event insertion may end at
different levels of the queuing system-the input channel, the
LPEQ and the TEQ. Define the hit rate of a level to be the
proportion of insertions ending at each level. In the process-
based and thread+SQ version, all of the events are inserted
into the thread queue. From figure 12, we can see that most
insertions end at the LPEQ when more than 8 threads are
used, suggesting that the contention is dispersed.
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4.4.2 within Node Mode
We assume that each worker process has the same number

of processing threads, and vary the total number of process-
ing threads in the simulation by starting up variant number
of worker processes. All of the processes reside in the same
node, they transfer external messages via shared memory.
This experiment was done in the PEPI machine.
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Figure 13: Execution time with shared memory
communication in within node mode in the the PEPI
machine.

From figure 13 and 14, we see that placing more threads in
the same process results in better performance, this is rea-
sonable for less interprocess communication is used. How-
ever, comparing these results to those obtained by placing
all of the processing threads in the same process, we do not
see a great difference. The combination of communication
threads and shared memory results in a short latency.
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Figure 14: Roll-back with shared memory commu-
nication in within node mode in the PEPI machine.

4.4.3 Hybrid Mode
The number of threads is limited by the number of phys-

ical cores in a node, and the number of threads should not
exceed the number of physical cores [1], which indicates em-
ploying several nodes to have large scale simulation is in-
evitable. We had this experiment in the Guillimin machine
and used the MPI option ppn (process per node) to dispatch
worker processes to nodes.
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Figure 15: Execution time with hybrid communica-
tion in the Guillimin machine, ppn refers to process
per node.

The Guillimin machine uses a well-optimized infiniBand
for remote communication. From the results in figure 15 and
16, we again see that placing all of the processing threads
in the same process results in the best performance. Once
when the remote communication is involved in, the perfor-
mance goes down without any surprise, the roll-back in-
creases sharply, the execution time is enslaved to the longest
latency.

In the purely remote communication case, the send buffer
of the communication thread overflows when more than 8
threads are in the same process. One communication thread
cannot accommodate 8 processing threads and more. This
indicates the hybrid mode is the general mode for large scale
simulation, and the number of processing threads in one
worker process should be properly determined.

5. CONCLUSION AND FUTURE WORK
This paper is concerned with the development of a parallel

discrete event simulator for reaction diffusion models used
in the simulation of neurons. The research was done as part
of the NEURON project (www.neuron.yale.edu). It is our
intention to include NTW-MT in NEURON for use by the
general neuroscience community.

We simulate a discrete event model for calcium wave prop-
agation on an unbranched apical dendrite of a hippocampal
pyramidal neuron. It is known that calcium plays a fun-
damental role in the second messenger system of a neuron.
However, the mechanism by which calcium waves are trans-
mitted is not completely understood. Our model is based

165



 

18075 

210739 

320782 

424762 

633729 

939017 

307429 

631983 

841827 

1238486 

1040903 

1103519 

1048275 

0

200000

400000

600000

800000

1000000

1200000

1400000

2 4 6 8 12 16

n
u

m
b

e
r 

number of processing thread 

Roll-back with Hybrid Commnunication 

within one process pure remote process, 4 worker process

4 threads*4 processes,ppn=2 2 threads*8 processes,ppn=2

2 threads*8 processes,ppn=3

Figure 16: Roll-back with hybrid communication in
the Guillimin machine.

on a deterministic calcium wave model described in [17].
Because stochastic models are more realistic than determin-
istic models for small populations, it may be possible to shed
more light on the transmission mechanism.
Our parallel simulator is optimistic and thread based. It

makes use of the NSM algorithm [8]. The use of threads is
an attempt to capitalize on multicore architectures used in
high performance machines, communication latency among
threads within the same process is minimized by pointers.
It makes use of a multi-level queue for the pending event set
and a single rollback message in place of individual anti-
messages. We examined its performance on the calcium
wave model and compared it to the performance of (1) a
process based optimistic simulator and (2) a threaded sim-
ulator which uses a single priority queue for each thread.
The multi-level queue simulator exhibited a superior per-
formance when all of the threads were placed in the same
process. The effects of shared memory and MPI based com-
munication were also investigated; the multi-level queue sim-
ulator proved to be scalable. However, the need for load
balancing algorithms was very clear in our experiments.
Our future work on the calcium wave model includes (1)

implementing a more detailed model and larger reaction dif-
fusion model and examining the performance of the multi-
level queue algorithm on this model (2) developing load bal-
ancing algorithms for NTW-MT. A hybrid (deterministic-
stochastic) model is another future effort.
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