TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. ?, NO. ?, ? 2016

Reproducibility in Computational Neuroscience
Models and Simulations

Robert A. McDougal, Anna S. Bulanova, William W. Lytton

Abstract—Objective: Like all scientific research, computational
neuroscience research must be reproducible. Big data science,
including simulation research, cannot depend exclusively on
journal articles as the method to provide the sharing and
transparency required for reproducibility.

Methods: Ensuring model reproducibility requires the use
of multiple standard software practices and tools, including
version control, strong commenting and documentation, and code
modularity.

Results: Building on these standard practices, model sharing
sites and tools have been developed that fit into several categories:
1. standardized neural simulators, 2. shared computational re-
sources, 3. declarative model descriptors, ontologies and stan-
dardized annotations; 4. model sharing repositories and sharing
standards.

Conclusion: A number of complementary innovations have
been proposed to enhance sharing, transparency and repro-
ducibility. The individual user can be encouraged to make use of
version control, commenting, documentation and modularity in
development of models. The community can help by requiring
model sharing as a condition of publication and funding.

Significance: Model management will become increasingly
important as multiscale models become larger, more detailed
and correspondingly more difficult to manage by any single
investigator or single laboratory. Additional big data management
complexity will come as the models become more useful in
interpreting experiments, thus increasing the need to ensure clear
alignment between modeling data, both parameters and results,
and experiment.

Index Terms—Reproducibility, computational neuroscience,
model sharing, simulator, annotation.

I. INTRODUCTION

HE complexity of the brain provides a key challenge for
neuroscience research, for computational modeling, and
for data science. Experimentalists have probed the brain at
many scales, from electron microscopy studies of synapses [1],
through axons [2], whole neurons and brain slices, up to an
awake behaving animal [3]. Many experiments reach from the
lowest to highest scales, for example evaluating performance
on a memory task as a drug modifies ion channel activity at
the molecular level.
Computational neuroscience is a specialized branch of
computational systems biology. It provides explicit multi-
scale models that can unify experimental observations and

R.A. McDougal is with the Department of Neuroscience, Yale University,
New Haven, CT, 06520 USA e-mail: robert.mcdougal @yale.edu.

A.S. Bulanova is with SUNY Downstate and Yale University. W.W. Lytton
is with SUNY Downstate and Kings County Hospital.

Manuscript received November 3, 2015; revised February 1, 2016; accepted
March 4, 2016.

Copyright (c) 2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions @ieee.org.

build novel theoretical frameworks. A century ago, work by
Lapicque led to the development of integrate-and-fire models
[4]. A half century later, Hodgkin and Huxley provided a
detailed multiscale biophysical model of the squid axon [2],
paving the way for subsequent advances in computational
neuroscience. Early on, simulations were generally one-off
or highly specialized and restricted to one laboratory, lead-
ing to difficulties with reproducibility. In the past decades,
several major general-purpose neuroscience simulators have
been developed, providing some degree of standardization and
enhancing reproducibility.

A. Overview

We start by describing general issues of reproducibility
(providing close-enough results) and replicability (providing
precisely the same results — a replica) as they specifically
relate to the computational neuroscience enterprise. We then
describe a number of specific tools, techniques and concepts
that have been developed to encourage sharing, transparency,
reproducibility, and replication. The development of a number
of standard neural simulators means that groups of researchers
now speak a common language, reducing babel. Shared com-
putational resources such as supercomputers now provide ac-
cess to previously restricted computational resources. Declar-
ative model descriptions have been developed that separate
a model from the specific implementations, again providing
a common language that now extends across simulators.
Repositories and sharing standards for code, data, and models
provide assurance that information is shared appropriately, and
as completely as possible. We consider each of these topics
in turn, focusing on specific examples and comparing related
tools.

B. Reproducibility and Replicability

Reproducibility, or rather its lack, is a major problem
in both experimentation and modeling. Results that cannot
be reproduced cannot be used for subsequent research to
further scientific progress. Difficulty in reproducing a model
(or experiment) does not imply misconduct or poor quality
research — typos happen, and key details are often left out of
a paper. Data-sharing difficulties are common to all of big data
science (distinguishable from big science where the focus is
on the large groups of coworkers or collaborators on a project).
Simulation suffers from big-data problems on both ends, both
in the data that goes into the project and in the data that comes
out. Insufficient detail at the input side — the model definition
— is a particular problem for simulation. If one looks at a

TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. ?, NO. ?, ? 2016

modeling paper, full simulation code is almost never included,
key equations may be omitted or assumed (e.g., abutment
between electrical compartments can be handled in many
different ways), and code cannot always be precisely replicated
even when all equations are given (e.g., different randomizers).
Lack of reproducibility impairs and delays scientific progress,
making it difficult or impossible for subsequent researchers to
stand on the proverbial shoulders.

What does it mean for a neuroscience model to be repro-
ducible? The words reproducible, repeatable and replicable
are used in scientific discussions in multiple different ways,
sometimes with contradictory definitions. Drummond [5] and
Crook et al. [6] draw a clear distinction between reproducible
and replicable. We follow their terminology and define:

o A replicable simulation can be repeated exactly (e.g., by

rerunning the source code on the same computer).

o A reproducible simulation can be independently recon-

structed based on a description of the model.
It follows that a replication should give precisely identical
results, while a reproduction will give results which are similar
but often not identical.

In general, a reproducible simulation offers more insight
into model design and meaning than does a model that is
simply replicable. At one extreme, an executable (machine
code) version of a simulation is entirely replicable on the
architecture of origin, but offers no insight into the design of
the model, and no practical possibility of extending it. Source
code is the best means for providing a model that is replicable
across architectures. Source code can also provide a moderate
level of insight into a model, depending in large part on how
well structured, well commented, and well documented it is.
Some models are by necessity abstrusely coded, particularly
large models that are designed to run speedily on specific
architectures. Furthermore, software only provides an approx-
imation for an underlying abstract mathematical description
(called the ansatz in physics) that is approximated by software
using numerical integration or other numerical approximation
techniques. At the next level of abstraction, the ansatz is
based on an integrated conceptual model. The conceptual
model is formed out of multiple hypotheses, explicit and
implicit, and a necessarily incomplete set of experimental
observations, after deciding what needs to be included and
what can be left out. (Experiments are themselves constrained
by governing hypotheses that determine what is looked for,
what is measured, and what is observed.) This group of
selected hypotheses and observations underlies the conceptual
model — it is our view of how the biology works. Along
this spectrum, from experiment to machine code, one sees
a monotonic increase in replicability, while reproducibility
is governed by an inverted-U (Fig. 1). Peak reproducibility
will generally lie at the level of the mathematical model or
algorithm.

Reproducibility and replicability are external measures that
reflect a user’s view of similarities in dynamics between an
original reference and a reproduction. By contrast, robust-
ness is generally taken to be an internal measure between
different models, with slight changes in parameters, that as-
sesses the ability to preserve similar dynamics despite these

100%]

Fig. 1. Reproducibility ascends as one moves from experimental data to a peak
coinciding with peak abstraction at the mathematical level, then declines again
as one proceeds to instantiate that model. Meanwhile, replicability, defined
here as the ability to produce precisely the same result, increased gradually.
Replicability is nominally impossible at the level of experiment: experiments
that measure analog values won’t yield the same precise value twice. (Too
many experiments also turn out to be irreproducible [7].) Whether a conceptual
model is replicated or reproduced is hard to say — the concept exists in
the users mind, only represented in schematic on the back of an envelope
or other location. Similarly, although mathematical models and algorithms
offer both excellent reproducibility and replicability, they may sometimes be
inaccessible, in rare cases overwhelming even the best-prepared minds [8].

changes. A model that is not robust will not be readily
reproducible, since implementation differences are likely to
introduce small changes that will have effects similar to small
changes in parameters. If the simulation is intrinsically robust
then reproducibility, reproducing the result of a simulation
with a different implementation, provides additional evidence
of robustness, [5], [9], [10] and demonstrates that a result
is not an artifact of implementation details or, worse yet,
of implementation bugs. An alternative implementation may
have improved performance characteristics that may make it
useful to merge with the original implementation to build an
improved composite implementation [10].

Despite every effort to control conditions, full replicability
is an impossible goal in experimental research [5]. Human or
animal behavioral research is the least replicable since it is
never possible to control what the subject is thinking [11].
Computational research, by contrast, offers the potential for
real replicability due to the deterministic nature of computers.
Even here, there remains risk of non-replicability due to the
small but nonzero risk of bit-flipping soft errors [12]. Such
small errors can have significant effects in large simulations
run for longer time periods, and in simulations run across mul-
tiple processors. Neuronal network simulations are particularly
vulnerable to showing major alterations due to a bit flip or
roundoff error, since a small shift in threshold crossing-time
will percolate through the network and produce vast alterations
in spike timing after one or more seconds of virtual time.
Although computational replicability is seen by some as a
potentially wasteful distraction from the broader scientific goal
of reproducibility [5], it is important that models be replicable
since they are often re-used as the building blocks for larger

TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. ?, NO. ?, ? 2016

models.

C. Challenges to replicability and reproducibility

The deterministic nature of digital computers and the pre-
cision of mathematical descriptions does permit us to avoid
the kinds of difficulties faced by experimentalists, such as
failure to reproduce experiments due to use of animals of
different gender, or different age, or different strains. Still,
there are many ways in which modeling can have problems.
In particular, the complexity of detailed simulations introduces
new challenges of adequate documentation, training and in-
structions to allow a program to be run correctly. Additionally,
complex simulations are typically built within the context of
complex simulation packages which are themselves difficult
to master.

Computational simulations are built on explicitly stated
mathematical rules — typically differential equations, but some-
times difference equations, or state-machine descriptions. As
in other fields, research is primarily communicated via journal
articles, which require the model to be expressed in a combi-
nation of equations and verbal descriptions. Although some
journals permit extensive appendices, page limits generally
prevent a complex model from being fully described. Author
errors may be augmented by type-setting errors — e.g., sub-
scripts or superscripts that end up at line level. Additionally,
the description of the model used in one figure may not be
the same as that used for another.

Another difficulty occurs when models require specialized
hardware or software, generally to optimize for speed. Large-
scale network simulations may require High Performance
Computers (HPCs), or Graphical Processing Units (GPUs)
[13], [14]. Still more problematic are simulations that use
highly specialized systems such as neuromorphic chips [15],
[16], or SpiNNaker chips [17], [18], hardwares that are
not commercially available. Similarly, at the software level,
simulations may be built atop commercial software such as
Matlab, posing a cost barrier. Older simulators, once used for
neuroscience research may no longer be available, or may be
available but not runnable under modern operating systems, or
may have never been generally distributed — e.g., ASTAP [19],
[20]. Even when software is free, open-source, current, and
readily downloadable, it may be inaccessible if the installation
is complicated, or if it will only compile or run on particular
platforms.

In order to determine if a model has been successfully
replicated or reproduced, one wants to compare with the output
of the original simulations shown in a figure. These data
are not typically made available with the simulation, so that
one is restricted to eyeballing the similarity with the figure.
When the full data are available, there are several reasons why
results may not agree precisely [6]. Quantitative differences
can arise due to 32- vs 64-bit calculations, or differences
in numerical methods. As noted above, the highly nonlinear
nature of neural dynamics with discontinuities at thresholds
means that a minor variation at one time step can produce
large quantitative differences over time, especially in network
models.

Deterministic results may also differ in the case of parallel
simulations, if variable communication latencies and system
overhead lead to processors completing tasks in a different
order relative to each other in subsequent runs. This type of
parallel error should be avoidable through the use of locks,
but these are not always placed appropriately. Simulations on
unusual parallel machines, e.g., the SpiNNaker architecture,
are globally asynchronous [18] and can produce variations
between runs as spikes arrive from presynaptic cells in po-
tentially different orders.

If a model is built in part by random number generation,
care is necessary to ensure that the random sample may be
reproduced on varying numbers of processors. In these models,
the random seeds are part of the description, and must be
recorded and shared to allow replicability.

II. NEUROSCIENCE SIMULATORS

The widespread use of neuroscience simulators improves
model reproducibility by allowing models to be coded at an
abstract level that maps more directly to the biology [21]. This
abstraction separates the model from the numerics, making the
elements of the model more identifiable and understandable.
Because simulator programming languages are structured to be
understandable, a model written carefully in such a simulator
can approach the organizational clarity of a Declarative model
description (Section IV). Common neuroscience concepts, like
an unbranched section of dendrite or a chemical reaction, will
be expressed in a consistent way across simulations [22], al-
lowing the biology to be understood by reading the code [23].
This contrasts with a simulation written in a general-purpose
language such as C, Fortran, Java or Matlab, which may not
have any easily discerned relation to familiar neurobiological
entities.

Utilizing a neuroscience simulator also reduces many prob-
lems introduced by implementing (re-implementing) from
scratch [24]. It allows the basic software engineering to be del-
egated to software specialists. Most current neuroscience sim-
ulators are open source. This allows independent development
by users, and permits investigation of underlying causes of any
problems that arise. The algorithms, numerics and others, are
generally published, peer-reviewed and extensively tested by
users, providing increased confidence in their validity. Most
of these simulators also allow an intermediate approach to
be used when developing novel models that do not clearly fit
into the existing categories provided by that simulator; one can
integrate custom code written in a general-purpose language
into a simulation described in the overlaying simulator [25].

Simulators invariably grow in complexity over years of use,
particularly as growing numbers of users request additional
features. This growth will affect the user interface as well as
altering simulator scope and the numerics backend. Typically,
a simulator will start by providing the user with the ability to
define objects such as channels and cells, and to set model
parameters, in an independent parameter file format. This
forms a very basic declarative language which then grows. The
language gradually takes on more of the attributes of a general
computer language, including flow control and data structures.

TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. ?, NO. ?, ? 2016

For a long time, each neuroscience simulator had its own
language. In recent years, neuroscience simulator designers
have converged on Python as a lingua franca [26], [27]. This
convergence has greatly improved cross-simulator readability
and has also enabled linking of simulations across two or
more simulators (Section II-E). Most major simulators now
either use Python exclusively or as an alternative to an older
language [28]-[36].

In addition to a parameter or scripting language, simulators
often provide a graphical user interface (GUI) to help define
or visualize models. Models constructed by GUI tools are
usually viewable by similar tools, providing a consistent,
predictable means of entering and extracting information. This
consistency facilitates understanding and reproducibility. The
SNNAP simulator [37], [38] is unusual in that it provides all
model specification via its GUL. VCell [39] and NEURON
[40] are more typical in that they allow many aspects of
simulations to be constructed by GUI tools, but also allow
more complicated simulations or added features to be entered
by programmatic specification. PSICS [41] takes a slightly
different approach by separating its GUI tool ICING from the
simulator, allowing it to be used in other contexts.

Simulators may also provide ways of extracting informa-
tion graphically even though a model was entered via code.
GENESIS [42] provides a showmsg command that reports
what parts of a simulation are affected by a given object.
NEURON’s ModelView [43] extracts the structure of a model,
however created, from NEURON’s internal data structures and
displays it graphically. Similar functionality is available for
some models on the ModelDB repository (modeldb.yale.edu)
[23], [44].

The inherent multiscale nature of computational neuro-
science was already identified in the founding document that
provided the name [45]. One thing that makes computational
biology different from other simulation areas such as physics
and chemistry is the need for a multiscale approach, due to
the impossibility of fully abstracting a lower level in the one
above. To a greater or lesser extent, all of the simulators
described here provide multiscale capabilities, generally at
least providing the ability to simulate at the subcellular and
cellular scales, or at the cellular and network scales. We
start by describing the simulators that provide the broadest
scale-coverage, and then describe some of the simulators that
provide more detailed coverage by specializing at particular
scales. Finally we mention tools that provide multiscale cov-
erage by linking simulators.

A. Multiscale simulators

GENESIS [42], MOOSE [28], [46], and NEURON [40] are
simulators that aspire to the largest multiscale range, from
molecular [22], [47], [48] to large networks [49], [50], with
the ability to simulate across these multiple scales [S1]. These
simulators generally encourage the use of multicompartmen-
tal models of neurons, utilizing neuroanatomically-acquired
dendritic tree morphologies approximated as tree-structured
collections of frusta and cylinders. However, they are also able
to simulate simplified integrate-and-fire cells, and can combine

both in hybrid networks. These simulators support multiple
integration techniques, allowing different numerical methods
to be tested with a single simulation to check for robustness
and numerical reproducibility. All of these simulators provide
efficient numerical integration of voltage or diffusion across
tree-like structures [52] and support parallel network simula-
tions [53]-[55]. NEURON also supports parallelization of an
individual neuron [56]. All of these simulators utilize Python
as a programming language. NeuroConstruct [57] can convert
declarative NeuroML [10] models to the native formats for all
of these simulators, encouraging testing of reproducibility.

B. Reaction-diffusion simulators

The lowest level in computational systems biology is molec-
ular dynamics, but this scale is not yet much used in compu-
tational neuroscience. Reaction-diffusion covers the smallest
scales that are commonly explored. Reaction-diffusion ques-
tions arise over scales that range from calcium microdomains
of nanometers [58], up to calcium waves that propagate for 10s
or 100s of microns down an apical dendrite [59], [60]. The
simulators specialized for this domain generally only scale up
to subcellular scale and rarely to whole-cell scale.

MCell [61] and Smoldyn [62] support meshless 3D particle-
based stochastic simulations of small parts of a neuron. For
increased performance, Smoldyn supports GPU simulation
[63], [64]. Smoldyn has been integrated with MOOSE [46]
andVirtual Cell (VCell) [65]. VCell [39] is widely used to
simulate reaction-diffusion in computational systems biology
and has also been used in neuroscience [66], [67]. The VCell
simulator performs stochastic and deterministic simulations.
VCell can import and export SBML reaction specifications
[68] which then can be reproduced with other tools. STEPS
[33], NeuroRD [69], and PSICS [41] provide stochastic
reaction-diffusion simulations on relatively large morphologies
corresponding to neuroanatomical morphologies [70], PSICS
has partial support for the NeuroML model interchange format.

C. Large scale network simulators

Several software tools focus on simulation of large scale
networks, with various approaches to this task. NEST [71]
is developed for simulation of large networks of spiking
neurons that can be described with just a few differential
equations. Nengo is a simulation tool with graphical and
scripting interfaces that allows users to generate and simulate
networks of simple neurons with desired overall population
behavior [34]. This simulator reaches for the highest scales and
is used for studies to relate neuroscience to cognitive science
and psychology. Nengo was used to create Spaun (Semantic
Pointer Architecure Unified Network) [72], a 2.5-million-
neuron simulation at whole-brain scale that performed a va-
riety of behavioral tasks. The MIIND simulator [73] focuses
on population level models, mainly with population density
techniques. Topographica [74] is a large-scale neural model
simulator with dedicated support for modeling topographic
maps. The central object of neural simulation in Topographica
is a Sheet, which is a two-dimensional population of neurons

TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. ?, NO. ?, ? 2016

with similar properties, and a typical model contains a num-
ber of sheets and connections between them. Topographica
interfaces with NEST and NEURON [75].

D. Mathematically-oriented simulators

One widely used class of simulators describes their models
explicitly in mathematical notation [76]. XPPAUT [77], PyD-
STool [78], and Brian [30] are prominent members of this
class. Equations for XPPAUT are specified by a text file, but
it is otherwise controlled through a GUI interface. Although
XPPAUT provides no scripting capability, it is widely used
for its simplicity and fast solvers. PyDSTool is a Python
module providing similar capabilities. Unlike all the other
tools discussed here, PyDSTool and XPPAUT provide explicit
support for bifurcation analysis. Brian describes equations
for an individual neuron in an XPPAUT-like equation format
as a Python string. Brian then uses Python commands to
construct groups of such neurons and connect them. Numerical
integration in Brian is performed using C++ or graphics
processing unit (GPU)-based generated code via GeNN [14],
[79]. The latter strategy is advantageous because even low
end GPUs typically support many more parallel calculation
pipelines than CPUs, thereby offering an inexpensive route to
high speed simulations.

E. Multi-simulator tools

It is sometimes advantageous to use simulators indirectly
or as a group. PyNN [32] provides a standard Python API
(Application Programming Interface) for specifying models in
multiple simulators. A simulation so specified may then be
reproduced in other simulators to check for reproducibility and
robustness. NeuroConstruct provides a GUI for constructing
models, which can then be run with any of several simulators
to check reproducibility [57]. NeuroConstruct also outputs a
simulator-independent declarative model specification (Section
IV). MUSIC is a multi-simulator standard for exchanging
neuron spike events that can run parts of one simulation in
multiple simulators including NEST, MOOSE, NeuroRD, and
NEURON [80]. It thus allows a model to be built that takes
advantage of the strengths of each simulator, encouraging
building of hybrid simulations that may include different simu-
lation parts at different levels of detail [48]. Hybrid simulations
allow different simulators to be swapped in for different
parts, checking reproducibility. Geppetto (geppetto.org) can
be used to provide a consistent web interface for running
computational neuroscience models, and is currently used by
the OpenWorm project (openworm.org) [81].

III. SHARED COMPUTATIONAL RESOURCES: HARDWARE
SHARING AND VIRTUALIZATION

Lack of access to suitable hardware or software is a ba-
sic impediment to replication and reproduction. There are a
number of sites and tools that address this problem.

A. The NeuroScience Gateway — shared HPC

The NeuroScience Gateway (NSG; nsgportal.org) provides
free and easy access to high performance computers (HPCs)
[82], [83]. It thereby reduces barriers to replicability and
reproducibility for larger models that require HPCs either for
simulation or analysis [84]. In addition to providing NSF-
supported cycle time on these expensive large machines, NSG
also makes it much easier to launch a job by providing a highly
simplified web interface (the portal) that hides the complicated
details needed for setting up parallel simulations as batch
jobs using Torque, PBS or SLURM [85], [86]. NSG provides
support for models running under several major neuroscience
simulators — Brian, MOOSE, NEST, NEURON, pGENESIS
(parallel GENESIS), and PyNN [53], [82]. Generally, parallel
models from ModelDB can be run on NSG by uploading
the zip file from ModelDB and setting a few options (e.g.,
simulator, number of cores, name of main file).

B. Simulation virtualization

The Simulation Platform [87] was developed by the
Japanese International Neuroinformatics Coordinating Facility
Node (INCF Japan Node) to permit models to be run remotely
through a browser on their hardware. It provides web-based
access to a virtual machine to test pre-configured models from
the ModelDB [44] and Visiome [88] repositories. This allows
visitors to these repositories to click a Run button on a sup-
ported model and launch a model that will run immediately on
their screen. The user can then run a simulation without having
to install the simulator and related software and the model
itself to run the model locally. Files generated during the
session are offered for download at the end of the simulation
to allow for local analysis.

NeuroDebian provides a stand-alone virtual machine that
can be installed and run locally on all major platforms to
immediately provide access to several neuroscience-related
packages, including the simulators Brian, PyNN, and XPPAUT
[89]. It also installs a set of Python modules that facilitate
numerical calculations and databasing. As opposed to the
INCF Japan Node Simulation Platform, the virtualization used
here runs on a user’s local machine and is not subject to
network latency.

The virtual machine provided by NeuroDebian is based on
a Debian-derived Linux OS. The packages which form part of
NeuroDebian can be easily installed in other Linux systems. In
this context, NeuroDebian provides a simple one-stop single
source to get rapid access to a large set of tools that will then
be installed directly on a user’s machine and will not require
any virtualization.

IV. DECLARATIVE MODEL DESCRIPTIONS

Declarative model descriptions provide a formal mathemat-
ical specification of a model in a way that is impossible in nat-
ural languages. This level of description is above the computer
code level in that it describes an idealized model, independent
of the approximations that are necessary to simulate the model
numerically. These descriptions typically provide the ability to
include extensive annotations that link the mathematics to the

TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. ?, NO. ?, ? 2016

biology (Section V-C). Tools that can directly read and write
multiple declarative descriptions, like jNeuroML [90], expand
the utility of these descriptions.

Declarative model descriptions have the advantage of be-
ing useable with multiple simulators [91]. Analysis can be
done on data structures used by a particular simulator but
these data structures are simulator-specific and vary greatly in
interpretability [23]. Simulator-independent models facilitate
collaborative model development as they allow different teams
to each work with their preferred tools [92]. Use of multiple
simulators reduces the risk of artifacts due to simulator bugs
or inappropriate usage and confirms reproducibility [93]. Stan-
dardized descriptions also allow the underlying models to be
compared and searched to identify models matching specific,
previously untested criteria [21].

NeuronUnit is a tool to compare models and determine
consistency with experiment by rigorous comparison with
experimental results [94]. NeuronUnit is thus far primarily
focused on ion channels and single neuron models.

The procedural code (imperative language) used on a com-
puter can do anything the computer is capable of doing, bugs
and all. A well-designed declarative specification by contrast
is limited to what is allowed by the specification — there is a
specification design that defines what sorts of operations and
functions are permitted. Generally, a specification design is
created by looking bottom-up at the biology to determine what
kind of natural objects are out there that need to be specified,
while also looking top-down to existing models to see what
objects, natural or approximations to the natural, have been
typically used. When looking at existing simulators, one can
pick and choose features, or attempt to find and use all features
(union of existing simulator features), or use features that are
commonly used (intersection of existing simulator features)
[95].

Older specifications like SWC typically used a custom
format [96], [97]. Newer standards are now typically devel-
oped under XML [98], or under Javascript Object Notation
(JSON), because parsers for these formats are readily available
for many programming languages. The COMBINE initiative
(COmputational Modeling in Blology NEtwork) seeks to allow
standards communities to learn from each other’s designs and
avoid duplication of work [99]. Although big science has
become more common, most research is still being done by
individual labs [100]. Individual labs or groups may standard-
ize their own model formats. For example, the Cell Types
database at the Allen Brain Institute (celltypes.brain-map.org)
[101], provides NEURON models in a standardized JSON
format runnable via their Software Development Kit (SDK).
That said, the benefits of standardization can only be achieved
with the involvement of the community.

Computational studies may take partial advantage of declar-
ative specifications without using them throughout their work-
flow. For example, it is common for models to specify
cell morphologies in the declarative SWC format, while all
other descriptive levels are coded procedurally for a simu-
lator. Declarative specifications may also be generated, au-
tomatically or by hand from a simulation model, in order
to use the declarative specification as an exchange format

[102]. NEURON, for example, provides the ability to export
morphologies into NeuroML, regardless of how they were
originally instantiated.

A. SWC morphology format

The SWC format is one of the earliest widely-used standards
in computational neuroscience [96]. SWC focuses solely on
describing the morphology of a neuron. In comparison to
the other formats described here, SWC files have a simple
encoding: each line contains several space-separated values
whose meaning is interpreted based on position. These values
encode a point identifier, a section type (soma, apical dendrite,
distal dendrite, etc.), x, y, 2, radius, and parent identifier (used
to describe the tree structure). SWC files are widely available
and widely supported: SWC is the morphology format for
BigNeuron, a project to advance the state of the art for
3D neuron reconstruction [103]. All morphologies submitted
to the NeuroMorpho.Org repository [97] are converted into
SWC format. Some existing morphology tracing tools, such as
NeuronStudio [104] and Neuromantic [105] allow saving mor-
phologies directly into SWC format. Tools such as NLMor-
phologyConverter (neuronland.org) and NeuroConstruct [57]
can convert SWC files to native formats suitable for use with
simulators. NEURON’s Import3D tool allows importing SWC
morphologies directly without an intermediate translation step.

B. NeuroML and NineML

NeuroML [10], [21] is an XML-based neuroscience-specific
standard designed for the specification of computational neu-
roscience models. NeuroML is serializable as either XML or
JSON [106]. In NeuroML version 1, channel kinetics was
limited to a set of predefined forms; version 2, currently in
beta, introduces Low Entropy Model Specification (LEMS)
[90], which allows modelers to define their own kinetic forms.
It continues to provide a reference set of channel types [106].
To reduce the risk of misinterpreting models, the NeuroML
standard requires all units to be explicitly specified [106].
The NeuroML group provides a number of tools to simplify
working with NeuroML, including libNeuroML and PyLEMS
[106]. Many simulators and other analysis tools provide at
least partial support for NeuroML (a list is provided at
www.neuroml.org/tool_support). Additional simulator support
is available by converting NeuroML models to PyNN [32] via
NeuroConstruct [107].

Where NeuroML is oriented toward morphologically de-
tailed models of single cells or networks of these cells,
NineML (Network Interchange for Neuroscience Modeling
Language) — developed by the INCF — focuses more on large
networks of integrate-and-fire type neurons [6]. In NineML
the levels of description are not physical scales but are more
conceptual, with an abstraction layer and a user layer [108].

C. SBML, CellML, SED-ML

SBML, CellML [109], [110] and SED-ML (Simulation
Experiment Description Markup Language) [111] are core
standards of the COMBINE initiative [99]. SBML is an

TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. ?, NO. ?, ? 2016

XML-based model description widely used in Computa-
tional Systems Biology, which was introduced to pro-
mote model exchange and accessibility [68]. SBML en-
joys the support of more than 280 simulation environments
(sbml.org/SBML_Software_Guide). This makes it possible to
check reproducibility by comparing results of computations
performed by several different simulators for the same model
[112].

The basic SBML components are species and reactions.
Despite this, its applications are not limited to biochemistry.
SBML species can be used to represent higher-level entities
such as a cell, organ or organism, with kinetic rate rules
then used to describe continuous change of any quantita-
tive parameter at any of these scales, and events used to
describe any discontinuous change. There exists a number
of neuroscience related models in SBML format, as well as
models that are of general interest in biology. Researchers
have also developed models that include both Computational
Neuroscience and Systems Biology components, creating, for
example, a multiscale simulation of a neuron or network
with subcomponents modified from SBML models and other
sources [51], [113]. SBMLMerge assists with merging separate
SBML files into a combined model [114]. Importantly, a
new set of features in the SBML Level 3 Spatial Processes
package under development will include spatial aspects of
molecular distributions. This will be of great value for building
into neuronal models where the “well mixed” assumption of
current SBML is not generally valid.

Among neuroscience simulation software, SBML is sup-
ported in whole or in part by STEPS, Moose, NEURON,
VCell, XPPAUT, and jNeuroML. LibSBML provides APIs
for working with SBML from Python and other programming
languages, giving access from other neural simulation pro-
grams that use Python as the interpreter. JSBML offers a pure
Java alternative. In addition, it is possible to convert SBML to
LEMS, so any tool that can import LEMS can use converted
SBML models [90].

CellML, often used for the same class of problems as
SBML, adopts a different philosophical and structural ap-
proach. SBML files are hierarchical and encode biological
information in SBML tags. CellML files are relatively flat and
describe the model as a collection of mathematical components
(e.g., equations describing an IP3R) with associated dynamics
and optional semantic biological metadata in RDF (Resource
Description Framework) [99], [102]. Like SBML, CelIML
reaction dynamics are specified in a subset of MathML [115],
although CellML requires units to be explicitly specified [102]
whereas SBML has default units. In CellML, parameter values
do not need to be specified, however. CellML uses this feature
to allow partial model descriptions for these qualitative models
[102]. An official CellML API [116] accessible via C++,
Java, and Python, offers support for reading, writing, and
generating code from CelIML files. CellML models are non-
spatial. Nonetheless, CellML has been used for a number of
neuroscience models. FieldML [117], [118] has been proposed
[102] as a way to spatially extend CellML models. CellML
repository software now supports visualizing FieldML via
the Zinc plugin [119]. Despite their differences, SBML and

CellML are largely interconvertible by tools like Antimony
[120].

SED-ML was developed for exchange of descriptions of
any simulation experiment but has thus far been primarily
used in computational biology. A SED-ML file can contain
references to re-used models, pre-processing procedures, infor-
mation about the simulation steps and settings, post-processing
procedures, and specifications of simulation output such as
what plots to create. It can specify the simulation parameters
required for models described in SBML, NeuroML, VCML
or CelIML. Pre- and post-processing can be specified using
MathML [115]. Simulation algorithms can be further spec-
ified using Kinetic Simulation Algorithm Ontology KiSAO
[121]. SED-ML encourages reproducibility by allowing model
authors to complete the description of how their simulations
should be run. After making changes to simulation, a user
can document their simulation experiment by exporting the
modified SED-ML description [111].

V. REPOSITORIES AND STANDARDS: CODE, DATA AND
MODELS

Sharing model code is essential for replicability of a sim-
ulation by others. Although code is nominally not needed
for reproducibility, which is by definition independent of
implementation, shared code is typically needed to provide
model details which are under-defined by the equations pro-
vided in a journal article — e.g., the choice of numerical
integration method. Software also facilitates reuse, the form
of reproduction that implicitly validates the old result while
adding new information [9].

Simulation data sharing is valuable for determining that
replication is precise and whether reproduction is precise,
close, or if it failed. However simulation data is in many cases
extremely large and is therefore typically not made available.

Whether a model has been defined declaratively in a de-
scriptive language like NeuroML, or programmatically through
simulator code, an electronic copy is both more accurate and
more immediately useful than a paper copy. Even when the
paper version is complete and entirely without error, errors are
likely to creep in when it is typed or scanned to get it back
into a computer.

Explicit policies and standards can be set at several different
levels of research assessment: 1. funding agencies; 2. publish-
ers; 3. repositories. In the clinical realm, a consortium of major
journals recently proposed requiring full data sharing for all
clinical articles published [122]. Although appropriate policy
is important, it is the culture of a community that dictates
what people actually do. In computational neuroscience, most
practitioners have embraced the culture of sharing, though
some resist it [123]. A few journals, or individual editors,
require that software be shared as a condition of publication,
noting that reproduction is not practical in the absence of
code. Additionally, federal funding agencies which support
much of this research are also encouraging sharing, and
require sharing as a condition of support for some funding
opportunities. One method to change the culture is to list
all of the potential models for a repository, whether shared

TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. ?, NO. ?, ? 2016

or not. Notifying authors that their work would be listed as
“unavailable” was enough to encourage many to provide files
for the NeuroMorpho.Org repository [124].

The rigor of policies must be balanced against the difficulty
of following them — if policies are too onerous or sharing
too difficult, investigators may avoid sharing or will game the
system and only comply with them nominally. In some cases,
guidance and guidelines rather than requirements may be more
effective.

Model sharing can take many forms [6]. At the simplest
level, a researcher can share source code files via email when
someone requests them. On-demand sharing is effective, but it
is potentially risky since the original files have to be located.
Finding old files reliably requires that one uses a version
control system systematically. Otherwise, files may get deleted
or modified. In the common case of code written by a trainee,
the files may not even be known to the people remaining in
the laboratory.

As a safeguard against such risks, many researchers have
established lab policies for sharing code. Many place code on
the research group’s website. This strategy has been adopted
by both individual researchers and large research groups, such
as the Allen Institute’s Cell Types Database (celltypes.brain-
map.org) and the Human Brain Project’s Neocortical Micro-
circuit Collaboration Portal (bbp.epfl.ch/nmc-portal/welcome)
[125]. However, especially for small groups, lab websites are
often only maintained as long as the lead researcher continues
to work at the same university [126]. A further difficulty with
the private-site approach is the difficulty of finding models
that are not deposited in any central location. Models are only
successfully shared to the extent that they are discoverable
[6]. An alternative to private sites is to share on a public
repository like GitHub (GitHub.com), which has the advantage
of providing version control as well as public access. Use of
a public repository also means that the code will continue
to be available even if its laboratory of origin moves or is
closed. GitHub is used, for example, for sharing code by the
OpenWorm project (GitHub.com/openworm) [81].

Making models more discoverable promotes new collab-
orations and model re-use [127]. Sharing a set of models
in a central repository greatly improves discoverability com-
pared to having the same models available across multiple
individual lab websites [128]. To address the problem of
discoverability, the computational neuroscience community
has developed several specialized databases for model sharing.
Having multiple models in one place also enables ready feature
comparison across models. In addition to providing a common
point-of-entry to find models from many labs, many of these
databases provide some levels of quality control [6]. Use of
version-control in a repository allows sharing of bugfixes and
other improvements [6], while still providing access to an
earlier, published, canonical model version. Shared models
also provide working examples of various techniques and
problem solutions that are valuable for neuroscience education
[129].

A. Specific sharing sites

1) ModelDB: The ModelDB repository (modeldb.yale.edu)
was developed in 1996 to allow model sharing and facilitate
model re-use and collaboration. By policy, ModelDB only
makes a model public after it has been used in a peer-
reviewed publication; the publication serves as background
and partial documentation for understanding the simulation
and interpreting the code. Each model continues to be manu-
ally curated to ensure that it replicates a figure in a published
paper, and to make minor changes where required to allow
the model to run on the 3 major platforms (Windows, Mac,
and Linux) where possible. ModelDB has grown to contain
over 1000 public models coded in over 70 different languages,
simulators and simulation environments. (Many simulations
are coded directly in a general-purpose programming language
and not in a simulator). However, there remains problems
convincing people to submit their models. For example NEU-
RON has been used in over 1500 publications (list at neu-
ron.yale.edu/neuron/static/bib/usednrn.html), but only about
one third of these models available on ModelDB. Brian has
been used in over 100 publications, but only one tenth of these
are available on ModelDB.

Easy model deposition encourages sharing. Generally, an
investigator can upload their running code to ModelDB with-
out change — ModelDB does not require any model conversion
or standard model description format. Since 2004, web forms
were added to provide baseline model characterization at
submission through menus of possible descriptors such as
cell type, brain region, topic, etc. [130]. These descriptors
are augmented and, if necessary, revised by the curator. If a
README providing instructions for running the simulation is
not provided by the investigator, it is added by the curator.
Although there are no particular rules about commenting
or documentation, many investigators provide fairly clean
code, realizing that deposited models will often be viewed
together with their publications. A Mercurial (mercurial-
scm.org) repository with revision history is provided for some
models.

Models may be located in ModelDB by searching for an
author, by searching the text of the model, or by searching
or browsing by the curated metadata. Additional descriptors
cover 129 topics across a broad range of subject areas: disease
states such as Alzheimers, learning and behavioral algorithms
such as pattern recognition, physiological measures such as
ion channel kinetics, and others. ModelDB’s ModelView [23]
provides an additional tool for examining NEURON models
on the web before downloading or running them. ModelView
automatically parses code to provide a structured view into a
model, describing, for example, cell morphologies, distribu-
tions of conductances, numbers of cells, network structure.

2) OpenSourceBrain: OpenSourceBrain (OSB) [131]
(opensourcebrain.org) promotes collaborative development of
unpublished work, as well as providing the potential for new
or continued collaboration for work that has already been
published. OSB provides version control for all deposited
models, facilitating groups working together. Models can be
submitted in any language, with OSB providing different

TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. ?, NO. ?, ? 2016

levels of support for different languages, with particular
support for NEURON, GENESIS, and MOOSE, and a focus
on NeuroML as a higher level descriptive language. OSB
provides strong model visualization for models described in
NeuroML. Each project on OSB is linked to an individual
public version control repository where the model code is
shared, usually on GitHub. Researchers can use OSB tools to
see who else is developing a given model and what changes
others have made. Once a model is published, OSB also links
to the model copy on ModelDB.

3) NeuroMorpho.Org: NeuroMorpho.Org [97] is a special-
ized repository for morphological reconstructions; its version
6.2 release (October 6, 2015) contains 34,082 reconstructed
neurons from 165 cell types. Each reconstruction is tagged
with metadata including species, gender, age, and staining
method. This database distributes both the original files and
a version standardized into the SWC format [96]. Their 3D
viewer tool additionally allows morphologies to be exported
into NeuroML, native NEURON, and native GENESIS for-
mats. Every month, NeuroMorpho.Org contacts authors of all
papers with new morphologies identified by a literature survey
to request that they share their data. The full list of papers with
known morphologies and whether or not they are available
in NeuroMorpho.Org is released on the repository’s website
[132].

4) Channelpedia: Channelpedia (channelpedia.epfl.ch) is
another specialized resource; it specializes in aggregating
information about ion channels with over 50 published models
available, relevant to both neuroscience and cardiac modeling.
Much of the information (e.g., location of the coding genes
in various species) is not yet relevant for the current level of
computational neuroscience research. Channelpedia distributes
ion channel models in several formats, including NMODL for
NEURON [133], [134] and ChannelML, a subset of NeuroML
[10]. Channelpedia provides figures showing the response of
the channel model and gating dynamics to voltage clamp
conditions, allowing the models to be validated by comparison
with experimental data.

5) Other repositories: A number of general model reposi-
tories also house neuroscience models.

The CellML repository [135] (models.cellml.org) is pow-
ered by Physiome Model Repository 2 software [136] and
stores both neuroscience and non-neuroscience models as
long as they are expressed in CellML [109]. There is a
separate category for Neurobiology (33 models at this time),
but neuroscience simulations are also found under additional
categories (203 found with search term “neuro”) including
electrophysiology, calcium dynamics, and circadian rhythms.
The Physiome software provides the ability to view a model
in several ways: as raw CellML, equations, or converted to
other formats.

The Visiome repository [88] (visiome.neuroinf.jp) hosts 83
published models, in addition to other vision-related resources.
These models work with a variety of tools including MATLAB
and NEURON. One feature of Visiome is that it provides an
explicit statement of license rights to each model’s code, which
appears on the model’s display page. Another interesting
feature is to identify the natural language, mostly English

and Japanese, used in commenting and documentation for a
particular model.

The BioModels database (biomodels.org) is a repository
containing hundreds of published models converted to SBML
[137]. It has multiple models related to neuroscience includ-
ing models of spiking neurons. Annotations connect model
elements to records in external database resources and allow
efficient search, comparison, and merging of models. For
curated models, the website provides a user interface for
exploring model elements, downloading a sub-model with
selected elements, viewing curator comments and figures
representing recalculated results corresponding to figures in
original publications, running simulations online, efc.

Much of the information available in the various databases
described here is searchable through a single website: the Neu-
roscience Information Framework (NIF; neuinfo.org) [138],
[139]. Information located by searching this data federation is
linked to its database of origin, which may offer additional
visualization and analysis tools.

B. Sharing simulation output

Although most often thought about in the context of ex-
perimental science, sharing data — the output of simulations —
also promotes reproducibility in computation, providing direct
reference values for reproducibility comparison. This is par-
ticularly important if the original model is not replicable due
to code or tool availability issues. Some model repositories,
such as JWS Online, address this challenge by running models
on demand to regenerate data [140]. This approach works
for small, quickly runnable models. However, computational
neuroscience models can generate a vast amount of data and
this data can grow without limit depending on how much
parameter exploration is done or how long the simulations
are run for.

Although there are still no widely-accepted standards for
data format or distribution for simulation data [141], some
preliminary standards have been proposed. The Neuroscience
Simulation Data Format (NSDF; GitHub.com/nsdf/nsdf) [142]
is specifically designed for storing simulation data as opposed
to experimental data. A high-level API allows accessing the
simulation data from the underlying HDF5 database. An
alternative data storage approach is to reuse experimental data
storage formats, although the experimental community also
lacks standards. The Neurodata Without Borders framework
for data sharing is a collaborative project involving several
large research groups [143]. NIX (GitHub.com/G-Node/nix)
is an alternative format under development by the INCF
German Node. All three of these formats embed their data
in a Hierarchical Data Format (HDF5) [144], which allows
third-party tools to work with the files using existing HDF5
readers.

C. Model annotation

Models must be interpretable to be useful. Ideally, models
should be interpretable as neuroscience and readily explicable
to a neuroscientist who is not a modeler. Therefore, the model
should be more than just a set of equations or subroutines —

TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. ?, NO. ?, ? 2016

comments and annotations should provide additional informa-
tion [124], [127], [129], [145].

Some model repositories provide annotation as part of
the curation process. For example, ModelDB [44] provides
annotation in the form of accompanying metadata for each
model. Curated BioModels [146] entries have the annotations
embedded in the SBML files themselves. These annotations
typically map model parameters and equations to biological
concepts, but they may also map the model itself to the
dataset that inspired it [147]. Related information may or
may not be included in a model’s associated publication, but
putting all of the annotation in a machine readable form allows
tools like the NIF LinkOut Broker [148] to automatically find
complementary information and resources.

For maximum efficacy, a consistent terminology is nec-
essary for the annotations. The NeuroLex ontology [149],
[150] (neurolex.org), powered by the NIF, provides a hi-
erarchically structured set of neuroscience terms. Some ex-
ternal resources (e.g. Open Source Brain) and journal arti-
cles use this ontology to provide an unambiguous identifi-
cation of the neurons, etc involved. Another NIF-affiliated
project, the Resource Identification Initiative (RII) provides
similar standardized Research Resource Identifiers (RRIDs)
for organisms, antibodies, software tools, and databases.
Dozens of journal editors have partnered with RII to pro-
mote the use of RRIDs [151]. The Mathematical Modeling
Ontology (bioportal.bioontology.org/ontologiessyMAMO) pro-
vides standard terms for classifying categories of models
(e.g., MAMO_0000045 : differential equation model is a child
of MAMO_0000003 : mathematical model). A preliminary
version of a Computational Neuroscience Ontology (CNO)
has also been developed [152]. CNO reuses terms from
the Systems Biology Ontology [121] and elsewhere where
appropriate.

D. Model sharing standards and policies

Many of the tools and repositories discussed in this paper
provide and encourage use of certain standards for model
annotation and sharing activities. At a higher level of def-
inition, some proposals have sought to identify aspects of
model definition that should be enforced by any repository
or model definition standard — standards for the standards.
For example, one extensive proposal for information annota-
tion standards addressed: hypothesis, model derivation, model
description, implementation details, analysis, and supporting
evidence [128]. Another proposal suggested that all individual
figures in a publication should carry necessary meta-data for
critical information via version numbers of specific parameters
[6].

The Minimum Information About a Simulation Experi-
ment (MIASE) [153] standards proposed ten sharing rules
that should ensure reproducibility. The rules fall under three
categories which can be viewed as a minimal basis for sharing:
1. describe the model including all parameters and equations;
2. describe the simulation process, both the virtual experiment
and numerical methods 3. describe data analysis and how raw
data is transformed into results presented. At the descriptive

level, these could be satisfied by using a NeuroML description
with SED-ML for categories 2 and 3. MIASE standards can
also be satisfied by sharing code, assuming adequate code
transparency. For example, making sure to separate model de-
scription from simulation procedure maintains the distinction
between the above categories, thereby improving clarity and
reproducibility [147].

In addition to repository standards, model sharing and
reproducibility can be mandated by the setting of policies
by organizations in positions of power, namely publishers
and funding agencies. In the United States, the National
Institutes of Health (NIH) have data sharing mandates in place
for certain types of grants and for grants of large size, but
these mandates are not clearly spelled out in the case of
computer simulation and serve more as encouragement rather
than requirement. Some specific modeling-oriented NIH and
National Science Foundation (NSF) funding initiatives have
specific model sharing requirements built in to the request
for proposals. Recently, the NIH has begun development
of 4 focus areas for a new rigor and transparency policy
(grants.nih.gov/reproducibility/index.htm). The third of these
includes “full transparency in reporting experimental details
so that others may reproduce and extend the findings.” On
the publication side, the PLOS journals and Nature Methods
require that a model be shared when it forms a key part of
the work — some papers may include models that are trivial,
standard, or are incidental to the point of the paper. Similarly,
other journals encourage the individual editor to require model
sharing on a case-by-case basis for those papers that are
primarily model-based.

E. Provenance and version control

Understanding the provenance of a model, or of a specific
result, greatly improves scientific usefulness. Provenance for
a particular model will ideally include details of what paper
or what experiment was used to determine a particular model
result [154]. Provenance for a particular result includes what
data transformations were needed to go from raw data to
a figure or table. In computation, result provenance can be
provided by an algorithm at the descriptive level, or by a
script that produces the result, up to the point of putting
up a particular figure from a paper. Version control is the
standard and best method of providing an unbroken prove-
nance chain for software, but can also be used for other
documents related to the research. In experimental research,
the laboratory notebook is traditionally regarded as the single
site for determining a result’s provenance and documenting
that an experiment reported was actually done. In modeling,
a electronic notebook (enotebook) is typically used instead of
paper documents, allowing them to be an integral part of the
research process. Placing a daily-dated electronic notebook un-
der version control with a daily check-in makes it much more
difficult to forge notebook entries at a later date. Integrating
notebooks with version control complements a version control
system’s own comment chain and preserves information about
what results were generated when, with which parameters, and
with which version of the code.

TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. ?, NO. ?, ? 2016

Internal reproducibility can be further enhanced by adher-
ence to standard workflows and by implementing these as
much as possible through workflow automation with tools like
Mozaik [155] and Lancet [156]. Similarly, databases associ-
ated with parameter provenance and other research documents
can also be added to one or more repositories associated with
a research project. In this way, a later researcher can follow
the full chain of what has been done, being able to note, for
example, when and why a particular parameter was changed
and being able to reproduce a model with either version of that
parameter. In some cases, simpler initial models saved from
an earlier stage in the development process may offer greater
conceptual clarity due to their simplicity.

Collaborative development, whether across laboratories or
within one laboratory, greatly benefits from version control,
permitting each investigator to reproduce the work of the other
and to immediately see differences in code or parameters.
Modelers may version locally with standard version control
software like Subversion, Git or Mercurial or on a general-
purpose public repository like GitHub. OpenSourceBrain pro-
motes [131] collaborative development backed by GitHub and
other public version control repositories. The ModelDB repos-
itory allows but does not require Mercurial-based versioning.
Sumatra provides a simulator independent method to record
a command-line and code version used to run a simulation
[157], [158]. SBML allows model history to be embedded
in the SBML file itself [159]. Some integrated development
environments (IDEs) for Python provide similar facilities.

FE Licensing

Law school textbooks could and surely will be written about
the issues of copyright and licensing in biomedical simulation,
a subtopic within the laws of software that must also take into
account the likelihood that such simulations will eventually be
used on people in a clinical environment. Clinical applications
will require far more attention to credibility, prior disclosure,
and malpractice protection than is required for models devel-
oped for other modelers (see torte law).

Sharing a model does not necessarily grant immediate legal
rights for others to use it [92]. Therefore license specification
is important. Specification may be specified in free text,
ideally using standard license wording provided by major
open-source licensing agreements such as GPL, MIT and
BSD licensing documents. GPL is somewhat stricter than
the other two since it requires that commercial uses release
any modified open-source code as also open-source (called a
copyleft requirement). Federal funding agencies have in some
cases requested that software developed under their auspices
be open-source and permit subsequent commercial use without
such restrictions. In addition to textual form, a machine-
readable form of license may also be useful [100]. When
code is obtained via a repository, the repository may itself
add additional conditions for reuse. Typically, a repository will
require that the repository and the original author both be cited
[127].

VI. BROADER ISSUES — EXPERIMENTAL DATA SHARING
AND MODEL MATCHING

Ultimately, reproducibility in science must unify models and
experiments. Experimental data is critical both for constrain-
ing computational model parameters and for evaluating the
output of models. There is an enormous amount of detailed
information out there in the experimental community, but
it is difficult to extract from papers, and not yet generally
available in shared databases. As big data becomes a bigger
part of neuroscience, there is increasing emphasis on providing
centralized data-basing of experimental data. This brings up a
large number of additional issues that are beyond the scope of
this article, particularly with respect to determining appropri-
ate metadata for physiological experiments performed under
different conditions and, in the case of in vivo experiments,
with completely different tasks.

Major efforts in experimental database are being developed
under the auspices of the Human Brain Project (humanbrain-
project.eu), Allen Brain Atlas (brain-map.org) and in projects
associated with the US Brain Research through Advancing
Innovative Neurotechnologies (braininitiative.nih.gov). Addi-
tional specific efforts for experimental data sharing include
Collaborative Research in Computational Neuroscience [141]
(crcns.org) hosting Neurodata Without Borders [143], Hip-
pocampome [160] (hippocampome.org), and NeuroElectro
[161] (neuroelectro.org).

Even as additional quantitative information pours in, exper-
imental data for parameters will invariably remain incomplete.
Therefore, there will be a need to add to these databases,
or to their modeling affiliates, explicit lists of assumptions,
and alternative assumptions, about missing parameters [154].
These could then be accessed by experimentalists to provide a
wish-list of additional measurements to pursue. Some of these
measurements will not be possible at present, but will become
possible as new innovative recording and imaging neurotech-
nologies are developed. For example, it may eventually be
necessary to obtain point-to-point wiring data from individual
animals in order to determine general rules for how cortical
circuitry works.

As we develop simulation technology, we must address
critical gaps between simulation and reality. Just as an in
vitro model is only of value if it reproduces an in vivo
reality, simulation must make predictions that can be con-
firmed experimentally. While such a confirmation enhances
our trust in a model, it cannot show the model to be correct
or complete [162]. Meanwhile, failure of confirmation may
or may not refute, or falsify, a model, depending on the
degree of reproducibility of the experiment and phenomenon
being modeled (c¢f. “overdispersion” in place cells [11]). In
physics modeling, a falsified model is discarded. In biological
modeling, as in weather modeling, a falsified model is updated
and retried.

VII. CONCLUSIONS

At the level of individual investigator, best practice in model
sharing and reproducibility is comparable to best practice in
other software development:

TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. ?, NO. ?, ? 2016

o Version control. Free cloud-based version control services
now makes version control readily available. Version con-
trol is particularly important during model development
where it enhances productivity. Additionally, a simulation
typically goes through many variants to create different
figures — version identifiers associated with particular
figures make it possible to replicate individual figures in
a paper.

o Strong commenting and documentation. The journal arti-
cle associated with the model often serves as the model’s
primary documentation, and should have text and labels
aligned with code comments and ancillary code docu-
mentation. This should include ontology-based (e.g., Neu-
roLex) annotations for biological concepts, algorithms,
and simulator tools. Experimental data or other sources
of parameter values should be fully cited, with gaps in
parameter sourcing ideally fully acknowledged.

e Code modularity. Modular coding facilitates testing, pro-
motes reuse, and reduces the risk of implementation
errors. Code reused from other models should be cited
both in the code and in the paper.

e Open source sharing. Submitting models to online repos-
itories like ModelDB not only benefits the community but
also benefits the user by leading to increased visibility
and citations.

At the community level, repositories can take action by
encouraging the submission of structured metadata, and by
providing tools for examining models. Journals and funding
agencies can promote reproducibility by requiring model shar-
ing as a condition for publishing or for obtaining funding.

Development of standards for reproducibility will ensure
reproducibility as major models of specific brain areas grow
beyond the bounds of management by a single laboratory.
Complex models of neocortex, hippocampus, cerebellum, etc.
will reach a level of sophistication where their use and de-
velopment is shared among laboratories, individual labs using
these established models in their studies.

ACKNOWLEDGMENT

The authors would like to thank the Shepherd lab at Yale
University and the Neurosim lab at SUNY Downstate, and the
Interagency Modeling and Analysis Group Multiscale Model-
ing meetings for presentations and conversations that informed
the development of this manuscript. Supported by NIH grants
T15LM007056, ROIMHO086638, and UO1EB017695.

REFERENCES

[1] N. Toni et al., “Synapse formation on neurons born in the adult
hippocampus,” Nature Neuroscience, vol. 10, no. 6, pp. 727-734, 2007.

[2] A. L. Hodgkin and A. F. Huxley, “A quantitative description of
membrane current and its application to conduction and excitation in
nerve,” The Journal of Physiology, vol. 117, no. 4, pp. 500-544, 1952.

[3] A. Baddeley, “Working memory,” Science, vol. 255, no. 5044, pp. 556—
559, 1992.

[4] L. Lapicque, “Recherches quantitatives sur I’excitation électrique des
nerfs traitée comme une polarisation,” J. Physiol. Pathol. Gen, vol. 9,
no. 1, pp. 620-635, 1907.

[5] C. Drummond, “Replicability is not reproducibility: nor is it good
science,” 2009.

(6]

(71

(8]

[9]
[10]

[11]

[12]

[13]
[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

[28]

[29]
[30]

[31]

[32]

[33]

[34]

[35]

S. M. Crook et al., “Learning from the past: approaches for repro-
ducibility in computational neuroscience,” in 20 Years of Computa-
tional Neuroscience. Springer, 2013, pp. 73-102.

R. Williams, “Can’t get no reproduction: leading researchers discuss
the problem of irreproducible results,” Circ Res, vol. 117, pp. 667-670,
2015.

D. Castelvecchi, “The biggest mystery in mathematics: Shinichi
Mochizuki and the impenetrable proof,” Nature, vol. 526, pp. 178-
181, 2015.

A. Casadevall and F. C. Fang, “Reproducible science,” Infection and
Immunity, vol. 78, no. 12, pp. 49724975, 2010.

P. Gleeson et al., “NeuroML: a language for describing data driven
models of neurons and networks with a high degree of biological
detail.” PLoS Computational Biology, vol. 6, no. 6, p. e1000815, 2010.
A. Fenton et al., “Attention-like modulation of hippocampus place cell
discharge,” J Neurosci, vol. 30, pp. 4613-4625, 2010.

S. S. Mukherjee et al., “The soft error problem: An architectural per-
spective,” in High-Performance Computer Architecture, 2005. HPCA-
11. 11th International Symposium on. 1EEE, 2005, pp. 243-247.

R. Ben-Shalom et al., “Accelerating compartmental modeling on a
graphical processing unit,” Frontiers in Neuroinformatics, vol. 7, 2013.
E. Yavuz et al., “GeNN: a code generation framework for accelerated
brain simulations,” Scientific Reports, vol. 6, p. 18854, 2016.

C. Mead, “Neuromorphic electronic systems,” Proceedings of the IEEE,
vol. 78, no. 10, pp. 1629-1636, 1990.

R. Silver et al., “Neurotech for neuroscience: unifying concepts, orga-
nizing principles, and emerging tools,” The Journal of Neuroscience,
vol. 27, no. 44, pp. 11807-11 819, 2007.

M. M. Khan et al, “SpiNNaker: mapping neural networks onto a
massively-parallel chip multiprocessor,” in Neural Networks, 2008.
IJCNN 2008. (IEEE World Congress on Computational Intelligence).
IEEE International Joint Conference on. leee, 2008, pp. 2849-2856.
X. Jin et al., “Modeling spiking neural networks on SpiNNaker,”
Computing in Science & Engineering, vol. 12, no. 5, pp. 91-97, 2010.
W. T. Weeks et al., “Algorithms for ASTAP-a network-analysis pro-
gram,” Circuit Theory, IEEE Transactions on, vol. 20, no. 6, pp. 628—
634, 1973.

G. M. Shepherd and R. K. Brayton, “Computer simulation of a
dendrodendritic synaptic circuit for self-and lateral-inhibition in the
olfactory bulb,” Brain Research, vol. 175, no. 2, pp. 377-382, 1979.
N. H. Goddard et al., “Towards NeuroML: model description methods
for collaborative modelling in neuroscience,” Philosophical Transac-
tions of the Royal Society B: Biological Sciences, vol. 356, no. 1412,
pp. 1209-1228, 2001.

R. A. McDougal et al., “Reaction-diffusion in the NEURON simulator,”
Frontiers in Neuroinformatics, vol. 7, 2013.

, “ModelView for ModelDB: Online presentation of model struc-
ture,” Neuroinformatics, pp. 1-12, 2015.

A. M. Uhrmacher, “Seven pitfalls in modeling and simulation research,”
in Proceedings of the Winter Simulation Conference. Winter Simula-
tion Conference, 2012, p. 318.

J. G. King et al., “A component-based extension framework for large-
scale parallel simulations in NEURON,” Frontiers in Neuroinformatics,
vol. 3, 2009.

G. Van Rossum and F. L. Drake Jr, Python reference manual. Centrum
voor Wiskunde en Informatica Amsterdam, 1995.

A. Davison et al., “Trends in programming languages for neuroscience
simulations,” Front Neurosci, vol. 3, pp. 374-380, 2009.

S. Ray and U. S. Bhalla, “PyMOOSE: interoperable scripting in Python
for MOOSE,” Frontiers in Neuroinformatics, vol. 2, no. 6, pp. 1-16,
2008.

M. L. Hines et al., “NEURON and Python,” Frontiers in Neuroinfor-
matics, vol. 3, 2009.

D. Goodman and R. Brette, “Brian: a simulator for spiking neural
networks in Python,” Frontiers in Neuroinformatics, vol. 2, 2008.

D. Pecevski et al., “PCSIM: a parallel simulation environment for neu-
ral circuits fully integrated with Python,” Frontiers in Neuroinformatics,
vol. 3, 2009.

A. P. Davison et al., “PyNN: a common interface for neuronal network
simulators,” Frontiers in Neuroinformatics, vol. 2, 2008.

S. Wils and E. De Schutter, “STEPS: modeling and simulating complex
reaction-diffusion systems with Python,” Frontiers in Neuroinformatics,
vol. 3, 2009.

T. C. Stewart et al., “Python scripting in the Nengo simulator,”
Frontiers in Neuroinformatics, vol. 3, 2009.

J. M. Eppler et al., “PyNEST: a convenient interface to the NEST
simulator,” Frontiers in Neuroinformatics, vol. 2, 2008.

TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. ?, NO. ?, ? 2016

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]
[44]
[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

H. Cornelis et al., “Python as a federation tool for GENESIS 3.0,”
PLoS One, vol. 7, no. 1, p. 29018, 2012.

1. Ziv et al., “Simulator for neural networks and action potentials:
description and application,” Journal of Neurophysiology, vol. 71, no. 1,
pp- 294-308, 1994.

D. A. Baxter and J. H. Byrne, “Simulator for neural networks and
action potentials,” in Neuroinformatics. Springer, 2007, pp. 127-154.
L. M. Loew and J. C. Schaff, “The Virtual Cell: a software environment
for computational cell biology,” TRENDS in Biotechnology, vol. 19,
no. 10, pp. 401-406, 2001.

M. Hines and N. T. Carnevale, “NEURON: a tool for neuroscientists,”
The Neuroscientist, vol. 7, no. 2, pp. 123-135, 2001.

R. C. Cannon et al., “Stochastic ion channel gating in dendritic
neurons: Morphology dependence and probabilistic synaptic activation
of dendritic spikes,” PLoS Comput Biol, vol. 6, no. 8, p. 1000886, 08
2010. [Online]. Available: http://dx.doi.org/10.1371%2Fjournal.pcbi.
1000886

J. M. Bower and D. Beeman, The book of GENESIS: exploring realistic
neural models with the GEneral NEural SImulation System. Springer
Science & Business Media, 2012.

M. L. Hines et al., “Model structure analysis in NEURON,” in
Neuroinformatics. Springer, 2007, pp. 91-102.

M. Migliore et al., “ModelDB,” Neuroinformatics, vol. 1, no. 1, pp.
135-139, 2003.

T. Sejnowski et al., “Computational Neuroscience,” Science, vol. 241,
pp. 1299-1306, 1988.

S. Ray et al., “A general biological simulator: the multiscale object
oriented simulation environment, MOOSE,” BMC Neuroscience, vol. 9,
no. Suppl 1, p. P93, 2008.

U. S. Bhalla, “Use of Kinetikit and GENESIS for modeling signaling
pathways,” Methods in Enzymology, vol. 345, p. 3, 2002.

M. Brandi et al., “Connecting MOOSE and NeuroRD through MUSIC:
towards a communication framework for multi-scale modeling,” BMC
Neuroscience, vol. 12, no. Suppl 1, p. P77, 2011.

M. Migliore et al., “Distributed organization of a brain microcircuit
analyzed by three-dimensional modeling: the olfactory bulb,” Front
Comput Neurosci, vol. 8, p. 50, 2014.

H. Markram et al., “Reconstruction and simulation of neocortical
microcircuitry,” Cell, vol. 163, pp. 456-492, 2015.

S. Neymotin et al., “Calcium regulation of HCN channels supports
persistent activity in a multiscale model of neocortex,” Neurosci, vol.
316, no. 1, pp. 344-366, 2016.

M. Hines, “Efficient computation of branched nerve equations,” Inter-
national Journal of Bio-medical Computing, vol. 15, no. 1, pp. 69-76,
1984.

N. H. Goddard and G. Hood, “Parallel GENESIS for large-scale
modeling,” in Computational Neuroscience. Springer, 1997, pp. 911—
917.

M. Migliore et al., “Parallel network simulations with NEURON,”
Journal of Computational Neuroscience, vol. 21, no. 2, pp. 119-129,
2006.

N. Dudani et al, “Multiscale modeling and interoperability in
MOOSE,” BMC Neuroscience, vol. 10, no. Suppl 1, p. P54, 2009.

M. L. Hines et al., “Fully implicit parallel simulation of single
neurons,” Journal of Computational Neuroscience, vol. 25, no. 3, pp.
439-448, 2008.

P. Gleeson et al., “neuroConstruct: a tool for modeling networks of
neurons in 3D space,” Neuron, vol. 54, no. 2, pp. 219-235, 2007.

D. X. Keller et al., “Calmodulin activation by calcium transients in the
postsynaptic density of dendritic spines,” PLoS One, vol. 3, no. 4, pp.
€2045-e2045, 2008.

B. E. Peercy, “Initiation and propagation of a neuronal intracellular
calcium wave,” Journal of Computational Neuroscience, vol. 25, no. 2,
pp. 334-348, 2008.

S. A. Neymotin et al., “Neuronal calcium wave propagation varies
with changes in endoplasmic reticulum parameters: a computer model,”
Neural Computation, 2015.

J. R. Stiles et al., “Monte Carlo methods for simulating realistic
synaptic microphysiology using MCell,” Computational Neuroscience:
Realistic Modeling for Experimentalists, pp. 87-127, 2001.

S. S. Andrews et al., “Detailed simulations of cell biology with
Smoldyn 2.1,” PLoS Comput Biol, vol. 6, no. 3, p. €1000705, 2010.
D. V. Gladkov et al., “Accelerating the Smoldyn spatial stochastic
biochemical reaction network simulator using GPUs,” in Proceedings
of the 19th High Performance Computing Symposia. Society for
Computer Simulation International, 2011, pp. 151-158.

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[771

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

L. Dematté, “Smoldyn on graphics processing units: massively parallel
brownian dynamics simulations,” IEEE/ACM Transactions on Compu-
tational Biology and Bioinformatics (TCBB), vol. 9, no. 3, pp. 655-667,
2012.

S.-A. Brown et al., “Spatial organization and diffusion in neuronal
signaling,” in Computational Systems Neurobiology. Springer, 2012,
pp. 133-161.

——, “Virtual NEURON: a strategy for merged biochemical and elec-
trophysiological modeling,” Journal of Computational Neuroscience,
vol. 31, no. 2, pp. 385-400, 2011.

N. Hernjak et al., “Modeling and analysis of calcium signaling events
leading to long-term depression in cerebellar Purkinje cells,” Biophys-
ical Journal, vol. 89, no. 6, pp. 3790-3806, 2005.

M. Hucka et al., “The systems biology markup language (SBML):
a medium for representation and exchange of biochemical network
models,” Bioinformatics, vol. 19, no. 4, pp. 524-531, 2003.

R. F. Oliveira et al., “The role of type 4 phosphodiesterases in
generating microdomains of cAMP: large scale stochastic simulations,”
PloS One, vol. 5, no. 7, p. el1725, 2010.

J. R. Glaser and E. M. Glaser, “Neuron imaging with Neurolucida —
a PC-based system for image combining microscopy,” Computerized
Medical Imaging and Graphics, vol. 14, no. 5, pp. 307-317, 1990.
H. Plesser et al., “NEST: the neural simulation tool,” in Encyclopedia
of Computational Neuroscience, D. Jaeger and R. Jung, Eds. Springer
New York, 2015, pp. 1849-1852.

C. Eliasmith et al., “A large-scale model of the functioning brain,”
Science, vol. 338, no. 6111, pp. 1202-1205, 2012.

M. de Kamps and V. Baier, “Multiple interacting instantiations of
neuronal dynamics (MIIND): a library for rapid prototyping of models
in cognitive neuroscience,” in Neural Networks, 2007. IJCNN 2007.
International Joint Conference on, Aug 2007, pp. 2829-2834.

J. A. Bednar, “Understanding neural maps with Topographica,”
Brains, Minds, and Media, vol. 3, 2008. [Online]. Available:
http://www.brains-minds-media.org/archive/1402

——, “Topographica: building and analyzing map-level simulations
from Python, C/C++, MATLAB, NEST, or NEURON components,”
Frontiers in Neuroinformatics, vol. 3, 2009.

M. Stimberg et al., “Equation-oriented specification of neural models
for simulations,” Frontiers in Neuroinformatics, vol. 8, 2014.

B. Ermentrout, Simulating, analyzing, and animating dynamical sys-
tems: a guide to XPPAUT for researchers and students. Siam, 2002,
vol. 14.

R. Clewley, “Hybrid models and biological model reduction with
PyDSTool,” PLoS Comput Biol, vol. 8, no. 8, p. e1002628, 2012.

D. E. Goodman et al., “Brian 2: neural simulations on a variety of
computational hardware,” BMC Neuroscience, vol. 15, no. Suppl 1, p.
P199, 2014.

M. Djurfeldt et al., “Run-time interoperability between neuronal net-
work simulators based on the MUSIC framework,” Neuroinformatics,
vol. 8, no. 1, pp. 43-60, 2010.

B. Szigeti et al., “Openworm: an open-science approach to modeling
caenorhabditis elegans,” Frontiers in Computational Neuroscience,
vol. 8, 2014.

T. Carnevale et al., “The neuroscience gateway portal: high perfor-
mance computing made easy,” BMC Neuroscience, vol. 15, no. Suppl
1, p. P101, 2014.

S. Sivagnanam et al., “Introducing The Neuroscience Gateway.” in
IWSG. Citeseer, 2013.

R. A. Poldrack and J.-B. Poline, “The publication and reproducibility
challenges of shared data,” Trends in Cognitive Sciences, vol. 19, no. 2,
pp. 59-61, 2015.

R. L. Henderson, “Job scheduling under the portable batch system,” in
Job scheduling strategies for parallel processing. Springer, 1995, pp.
279-294.

A. B. Yoo et al., “Slurm: Simple linux utility for resource manage-
ment,” in Job Scheduling Strategies for Parallel Processing. Springer,
2003, pp. 44-60.

T. Yamazaki et al., “Simulation platform: A cloud-based online sim-
ulation environment,” Neural Networks, vol. 24, no. 7, pp. 693-698,
2011.

S. Usui, “Visiome: neuroinformatics research in vision project,” Neural
Networks, vol. 16, no. 9, pp. 1293-1300, 2003.

Y. O. Halchenko and M. Hanke, “Open is not enough. let’s take the
next step: an integrated, community-driven computing platform for
neuroscience,” Frontiers in Neuroinformatics, vol. 6, 2012.

TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. ?, NO. ?, ? 2016

[90] R. C. Cannon et al., “LEMS: a language for expressing complex
biological models in concise and hierarchical form and its use in
underpinning NeuroML 2,” Frontiers in Neuroinformatics, vol. 8, 2014.

[91] D. Beeman, “History of neural simulation software,” in 20 Years of

Computational Neuroscience. Springer, 2013, pp. 33-71.

[92] A. P. Davison, “Collaborative modelling: The future of computational
neuroscience?” Network: Computation in Neural Systems, vol. 23,

no. 4, pp. 157-166, 2012.

[93] R. Brette et al., “Simulation of networks of spiking neurons: a review of
tools and strategies,” Journal of Computational Neuroscience, vol. 23,

no. 3, pp. 349-398, 2007.

[94] R. C. Gerkin and C. Omar, “Collaboratively testing the validity of
neuroscientific models,” Frontiers in Neuroinformatics, p. 1, 2014.

[95] R. C. Cannon et al., “Interoperability of neuroscience modeling soft-
ware: current status and future directions,” Neuroinformatics, vol. 5,

no. 2, pp. 127-138, 2007.

[96] R. Cannon et al., “An on-line archive of reconstructed hippocampal
neurons,” Journal of Neuroscience Methods, vol. 84, no. 1, pp. 49-54,

1998.

[97] G. A. Ascoli et al., “NeuroMorpho.Org: a central resource for neuronal
morphologies,” The Journal of Neuroscience, vol. 27, no. 35, pp. 9247—

9251, 2007.

[98] T. Bray et al., “Extensible markup language (XML),” World Wide
Web Consortium Recommendation REC-xml-19980210. http://www.

w3. org/TR/1998/REC-xml-19980210, vol. 16, 1998.

[99] M. Hucka et al., “Promoting coordinated development of community-
based information standards for modeling in biology: the COMBINE
initiative,” Frontiers in Bioengineering and Biotechnology, vol. 3, 2015.

[100] A. R. Ferguson et al., “Big data from small data: data-sharing in the
‘long tail’ of neuroscience,” Nature Neuroscience, vol. 17, no. 11, pp.

1442-1447, 2014.

[101] A. I for Brain Science, “Allen cell types database [internet],” 2015.

[Online]. Available: http://celltypes.brain-map.org

[102] C. M. Lloyd et al., “CellML.: its future, present and past,” Progress in
Biophysics and Molecular Biology, vol. 85, no. 2, pp. 433—450, 2004.
[103] H. Peng et al., “BigNeuron: large-scale 3D neuron reconstruction from
optical microscopy images,” Neuron, vol. 87, no. 2, pp. 252-256, 2015.
[104] S. Wearne et al, “New techniques for imaging, digitization and
analysis of three-dimensional neural morphology on multiple scales,”

Neuroscience, vol. 136, no. 3, pp. 661-680, 2005.

[105] D.R. Myatt et al., “Neuromantic—from semi-manual to semi-automatic
reconstruction of neuron morphology,” Frontiers in Neuroinformatics,

vol. 6, 2012.

[106] M. Vella et al., “libNeuroML and PyLEMS: using Python to com-
bine procedural and declarative modeling approaches in computational

neuroscience,” Frontiers in Neuroinformatics, vol. 8, 2014.

[107] P. Gleeson et al., “Using NeuroML and neuroConstruct to build
neuronal network models for multiple simulators,” BMC Neuroscience,

vol. 8, no. Suppl 2, p. P1, 2007.

[108] I Raikov et al., “NineML: the network interchange for neuroscience
modeling language,” BMC Neuroscience, vol. 12, no. Suppl 1, p. P330,

2011.

[109] W. J. Hedley et al., “A short introduction to CellML,” Philosophical
Transactions of the Royal Society of London A: Mathematical, Physical
and Engineering Sciences, vol. 359, no. 1783, pp. 1073-1089, 2001.

[110] A. A. Cuellar et al., “An overview of CellML 1.1, a biological model
description language,” Simulation, vol. 79, no. 12, pp. 740-747, 2003.

[111] D. Waltemath et al., “Reproducible computational biology experi-
ments with SED-ML-the simulation experiment description markup

language,” BMC Systems Biology, vol. 5, no. 1, p. 198, 2011.

[112] F. T. Bergmann and H. M. Sauro, “Comparing simulation results of
SBML capable simulators,” Bioinformatics, vol. 24, no. 17, pp. 1963—

1965, 2008.

[113] M. Mattioni and N. Le Novere, “Integration of biochemical and
electrical signaling-multiscale model of the medium spiny neuron of

the striatum,” PloS One, vol. §, no. 7, p. e66811, 2013.

[114] M. Schulz et al., “SBMLmerge, a system for combining biochemical
network models,” Genome Informatics, vol. 17, no. 1, pp. 62-71, 2006.
[115] R. Ausbrooks et al., “Mathematical markup language (MathML) ver-
sion 2.0 . W3C recommendation,” World Wide Web Consortium, vol.

2003, 2003.

[116] A. K. Miller et al., “An overview of the CellML API and its imple-

mentation,” BMC Bioinformatics, vol. 11, no. 1, p. 178, 2010.

[117] G. R. Christie et al., “FieldML: concepts and implementation,” Philo-
sophical Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences, vol. 367, no. 1895, pp. 1869-1884, 2009.

[118]

[119]
[120]

[121]

[122]
[123]
[124]

[125]

[126]
[127]
[128]
[129]

[130]

[131]

[132]
[133]

[134]

[135]
[136]
[137]

[138]

[139]

[140]
[141]
[142]

[143]

[144]

[145]

[146]

[147]

R. D. Britten et al,, “FieldML, a proposed open standard for the
Physiome project for mathematical model representation,” Medical &
biological engineering & computing, vol. 51, no. 11, pp. 1191-1207,
2013.

——, “FieldML,” Encyclopedia of Computational Neuroscience, pp.
1182-1186, 2015.

L. P. Smith et al., “SBML and CellML translation in Antimony and
JSim,” Bioinformatics, vol. 30, no. 7, pp. 903-907, 2014.

M. Courtot et al., “Controlled vocabularies and semantics in systems
biology,” Molecular Systems Biology, vol. 7, no. 1, Oct. 2011.
[Online]. Available: http://dx.doi.org/10.1038/msb.2011.77

D. Taichman et al., “Sharing clinical trial data: a proposal from the
international committee of medical journal editors,” Lancet, 2016.

G. A. Ascoli, “The ups and downs of neuroscience shares,” Neuroin-
Sformatics, vol. 4, no. 3, pp. 213-215, 2006.

——, “Sharing neuron data: Carrots, sticks, and digital records,” PLOS
Biol, vol. 13, no. 10, p. €1002275, 2015.

S. Ramaswamy et al., “The neocortical microcircuit collaboration
portal: a resource for rat somatosensory cortex,” Frontiers in Neural
Circuits, vol. 9, 2015.

K. J. Gorgolewski et al., “Making data sharing count: a publication-
based solution,” Frontiers in Neuroscience, vol. 7, 2013.

D. Gardner et al., “Towards effective and rewarding data sharing,”
Neuroinformatics, vol. 1, no. 3, pp. 289-295, 2003.

E. Nordlie er al., “Towards reproducible descriptions of neuronal
network models,” PLoS Comput. Biol, vol. 5, no. 8, p. e1000456, 2009.
E. De Schutter, “The dangers of plug-and-play simulation using shared
models,” Neuroinformatics, vol. 12, no. 2, p. 227, 2014.

M. L. Hines et al., “ModelDB: a database to support computational
neuroscience,” Journal of Computational Neuroscience, vol. 17, no. 1,
pp. 7-11, 2004.

P. Gleeson et al., “The Open Source Brain Initiative: enabling collab-
orative modelling in computational neuroscience,” BMC Neuroscience,
vol. 13, no. Suppl 1, p. 07, 2012.

M. Halavi et al., “Digital reconstructions of neuronal morphology: three
decades of research trends,” Frontiers in Neuroscience, vol. 6, 2012.
M. Kohn et al., “A block organized model builder,” Mathematical and
Computer Modelling, vol. 19, no. 6, pp. 75-97, 1994.

M. L. Hines and N. T. Carnevale, “Expanding NEURON’s repertoire
of mechanisms with NMODL,” Neural Computation, vol. 12, no. 5,
pp- 995-1007, 2000.

C. M. Lloyd et al., “The CellML model repository,” Bioinformatics,
vol. 24, no. 18, pp. 2122-2123, 2008.

T. Yu et al., “The physiome model repository 2,” Bioinformatics,
vol. 27, no. 5, pp. 743744, 2011.

N. Juty et al., “BioModels: Content, Features, Functionality and Use.”
CPT: Pharmacometrics and Systems Pharmacology, 2015.

D. Gardner et al., “The Neuroscience Information Framework: a
data and knowledge environment for neuroscience,” Neuroinformatics,
vol. 6, no. 3, pp. 149-160, 2008.

A. Gupta et al., “Federated access to heterogeneous information
resources in the Neuroscience Information Framework (nif),” Neuroin-
Sformatics, vol. 6, no. 3, pp. 205-217, 2008.

B. G. Olivier and J. L. Snoep, “Web-based kinetic modelling using
JWS Online,” Bioinformatics, vol. 20, no. 13, pp. 2143-2144, 2004.
J. L. Teeters et al., “Data sharing for computational neuroscience,”
Neuroinformatics, vol. 6, no. 1, pp. 47-55, 2008.

S. Ray et al., “NSDF: Neuroscience simulation data format,” Neuroin-
formatics, pp. 1-21, 2015.

J. L. Teeters et al., “Neurodata Without Borders: Creating a common
data format for neurophysiology,” Neuron, vol. 88, no. 4, pp. 629-634,
2015.

M. Folk et al., “HDFS5: A file format and I/O library for high per-
formance computing applications,” in Proceedings of Supercomputing,
vol. 99, 1999, pp. 5-33.

I. Raikov and E. De Schutter, “The promise and shortcomings of
XML as an interchange format for computational models of biology,”
Neuroinformatics, vol. 10, no. 1, pp. 1-3, 2012.

N. Le Novere et al., “BioModels database: a free, centralized database
of curated, published, quantitative kinetic models of biochemical and
cellular systems,” Nucleic Acids Research, vol. 34, no. suppl 1, pp.
D689-D691, 2006.

J. Cooper et al., “A call for virtual experiments: accelerating the
scientific process,” Progress in Biophysics and Molecular Biology, vol.
117, no. 1, pp. 99-106, 2015.

TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. ?, NO. ?, ? 2016

[148] L. Marenco et al., “The NIF LinkOut broker: a web resource to
facilitate federated data integration using NCBI identifiers,” Neuroin-

formatics, vol. 6, no. 3, pp. 219-227, 2008.

[149] D. J. Hamilton et al., “An ontological approach to describing neurons
and their relationships,” Frontiers in Neuroinformatics, vol. 6, 2012.

[150] S. D. Larson and M. E. Martone, “NeuroLex.org: an online framework
for neuroscience knowledge,” Frontiers in Neuroinformatics, vol. 7,

2013.

[151] A. Bandrowski et al., “The Resource Identification Initiative: A cultural
shift in publishing,” Journal of Comparative Neurology, vol. 524, no. 1,

pp. 8-22, 2016.

[152] Y. Le Franc et al., “Computational Neuroscience Ontology: a new tool
to provide semantic meaning to your models,” BMC Neuroscience,

vol. 13, no. Suppl 1, p. P149, 2012.

[153] D. Waltemath et al., “Minimum information about a simulation ex-
periment (MIASE),” PLoS Computational Biology, vol. 7, no. 4, pp.

el1001122_1-e1001 122_4, 2011.

[154] M. Bezaire and I. Soltesz, “Quantitative assessment of CAl local
circuits: Knowledge base for interneuron-pyramidal cell connectivity,”

Hippocampus, vol. 23, pp. 751-785, 2013.

[155] J. Antolik and A. P. Davison, “Integrated workflows for spiking
neuronal network simulations,” Frontiers in Neuroinformatics, vol. 7,

2013.

[156] J.-L. R. Stevens et al., “An automated and reproducible workflow for
running and analyzing neural simulations using Lancet and IPython

Notebook,” Frontiers in Neuroinformatics, vol. 7, 2013.

[157] A. Davison, “Automated capture of experiment context for easier
reproducibility in computational research,” Computing in Science &

Engineering, vol. 14, no. 4, pp. 48-56, 2012.

[158] A. P. Davison et al., “Sumatra: A toolkit for reproducible research,”

Implementing Reproducible Research, p. 57, 2014.

[159] D. Waltemath et al., “Improving the reuse of computational models
through version control,” Bioinformatics, vol. 29, no. 6, pp. 742-748,

2013.

[160] D. W. Wheeler et al., “Hippocampome.org: a knowledge base of neuron
types in the rodent hippocampus,” Elife, vol. 4, p. 09960, 2015.

[161] S. J. Tripathy et al., “NeuroElectro: a window to the world’s neuron
electrophysiology data,” Frontiers in Neuroinformatics, vol. 8, 2014.

[162] K. Popper, Conjectures and refutations; the growth of scientific knowl-

edge. NY: Basic Books, 1962.

ulator development and model analysis.

Robert A. McDougal received his Ph.D. in Mathe-
matics from The Ohio State University in 2011 and a
M.S. in Computational Biology and Bioinformatics
from Yale University in 2015. He has over four
years experience as a developer for the NEURON
simulator and for the ModelDB repository, and he
is currently a Postdoctoral Fellow in the Department
of Neuroscience at Yale University researching sim-

Anna S. Bulanova received a Diploma in Applied
Mathematics at St. Petersburg State University, Rus-
sia in 2002; M.Sc. and Ph.D. in Mathematics from
University of Alaska Fairbanks in 2006 and 2009
respectively. In 2012 she started a postdoctoral job
at INRIA, France, to work in a project concerned
with applying neuromorphic architectures to com-
puting purposes. Since 2013 she is a Postdoctoral
Researcher with NEURON simulator development
« > group at Yale University and SUNY Downstate
Medical Center. Her current research interests in-

clude Computational Neuroscience, Control Theory, and Signal Processing.

William W. Lytton is a Professor in Physiology,
Pharmacology and Neurology at SUNY Downstate
and works as a clinical neurologist at Kings County
Hospital, seeing patients with a variety of brain
ailments. His research is in Computational Neuro-
science with a focus on the application of multiscale
modeling to various disorders of the brain, including
schizophrenia, dystonia, epilepsy, Alzheimers, and
stroke. He is author of "From Computer to Brain” a
basic introduction to the field.

