Circuit changes augment disinhibited shock responses in computer models of neocortex
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There is limited knowledge and some disagreement regarding the
density of connections between cortical layers. There is still less
known about connectivity within each layer. In the absence of
definite knowledge, modeling allows us to test hypotheses about
cortical wiring and dynamics in-silico.

4 models all show
Layer 2/3 dominance

Automated graph analysis of 4 published cortical models.

Graph Methods L2/3 (E2) is a central hub. Reciprocal excitatory feedback

Network setup: Graph measures will differ depending on how be::_weefn LS (tI'ES)t?nd LZ_/I3 p:_c;wde thte_ |?text level of inter-
we connect cells within or between layers. Since the basic action Tor activating epiieptirorm activity.
models give densities but not distributions, we tried 4

- . . - Red=eXxcitatory. Blue=inhibitory. Size of circles proportional to # of cells. Straightness of
different distributions: xcl y- Blue=inhibitory. 5iz ! proporti ig

edges proportional to density of connections. Length of edges inversely proportional to
density of connections. Circles sorted top to bottom by total average divergence.

1. Uniform: each cell connects 2. Scale-Free: most cells have few
randomly to any other cell in connections, but a few hubs
target population connect to most other cells Primary Visual Cortex (based on Martin model [4,6,7,10])

3. Fixed: Divergence is fixed for each cell; convergence varies.
4. Normal: Divergence follows normal distribution.

Measures:
Standard neurobiological connectivity measures --
divergence, convergence, connection density -- are
complemented by layer-specific or cell-specific graph-
theoretic measures in order to characterize cortical wiring.
3 major graph-theoretic measures were used:

1. Clustering coefficient: How likely are neighbors of a cell to be
connected to each other? A cluster is similar to a Hebb cell assembly.

No clustering (cells connected to cell

on R do not connect to each other) Medium clustering High clustering

2. Path length: average of shortest paths to connect two units. "Path"
in graph theory is # of edges between nodes (cells) crossed to get
from node A to node B. The path length shown below is 4.

Counts

3. Centrality: how

Acronym Key: E=excitatory; I=inhibitory; L=layer. E2 are excitatory
cells in layer 2/3 (2 is short for L2/3); most E cells are pyramids;
most | cells are basket cells; 12Q are double bouquet cells which
may be in L2/3 or L5; 12C, 14, 16C are chandelier cells;E4 are spiny
stellate cells; B in E5B,E2B=Dbursting, R in ESR=regular firing;

L in I2L,16L=LTS=low threshold spiking (bursting and LTS not
currently explicitly implemented)

Dynamics

We're interested in which wiring predisposes to sustained activity (ictal activity).
So far we have only explored the Martin model. Some wirings show sustained
activity. Initial stimulus is to E4 and E6 (thalamocortical inputs)

Cell mode] Network model

Stimulation to layers 4,6 lasting 20 ms. Activity spreads
across layers. All E cells in network are shown in raster.

A

Event-driven rule-based unit model (I&F+):

Different types of synapses:

AMPA,NMDA,GABAA,GABAB

Refractory period -- absolute, relative

Threshold

Adaptation -- fast, slow
Plateau potentials -- repetitive firing 5R Lt g ITHITRIIE.
Hyperpolarization after burst k I‘ I; % a: I [” | \ I i ” ;
Post-hyperpolarization rebound
Depolarization blockade

100 ms
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Haven't solved problem of balancing weights 5 -
so as to get 50/50 active/not-active. Here c
we use different connectivity algorithms T )
(within or between layers) but do not get E 2 i
near this balance (33/66 for scale-free case). Y .
We may need to use an adaptive algorithm ++ T
to set weights. (See Poster Column 1 for " T
description of the 4 distributions used.) 0

How do the activated networks (red) differ
U LIC LU ELLL from the not-activated (blue). Differences are
O Activation - . .

marginal and subtle -- ie a small increase
in hubs may make a big difference. Here we look at
convergence from E2/3 cells for all units to which
these project -- no clear conclusion possible here.
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Convergence from E2

Using 46,464,000 measures
To look at multiple factors, we ask how well w INOINORM - oo

activation/not predicts unusually high (red) o ffffffffffffffffgfgfffﬁf o
or unusually low (blue) measures. Effect acshl- S RS S e PR SRRt
strength is given by circle diameter for R PEE TR
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measures (y-axis). Internal E2/3 (E2-E2) S ST EE T ES T
convergence and multiple measures into E5 are &°fr oo
important. (We excluded here the NORMAL el-g ) ffffffffffg
group where almost all networks activatedas &0+ i i~ S S . .

shown in histogram above.)

Sprouting

We predicted that sprouting along pathways
involving E2/3 would increase number of hubs
and thereby promote network activation. Tested
by either sprouting from randomly chosen cells
(black) or from cells chosen for existing low
centrality (red left) or existing high centrality
(red right).
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Conclusions

1. L2/3 excitatory cells provide a central
hub enabling cortical activation.

2. Reciprocal excitatory feedback between
L5 and L2/3 also critical.

3. Standard neurobiological measures

of type-specific convergence and
divergence are more useful than general
graph-theoretic measures in predicting
dynamics.

4. Small variation in degree distribution

in critical cell populations (layers) produces
large changes in dynamics.
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