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Neymotin SA, Suter BA, Dura-Bernal S, Shepherd GMG,
Migliore M, Lytton WW. Optimizing computer models of corti-
cospinal neurons to replicate in vitro dynamics. J Neurophysiol
117: 148-162, 2017. First published October 19, 2016;
doi:10.1152/jn.00570.2016.—Corticospinal neurons (SPI), thick-
tufted pyramidal neurons in motor cortex layer 5B that project
caudally via the medullary pyramids, display distinct class-specific
electrophysiological properties in vitro: strong sag with hyperpo-
larization, lack of adaptation, and a nearly linear frequency-current
(F-I) relationship. We used our electrophysiological data to pro-
duce a pair of large archives of SPI neuron computer models in two
model classes: /) detailed models with full reconstruction; and 2)
simplified models with six compartments. We used a PRAXIS and
an evolutionary multiobjective optimization (EMO) in sequence to
determine ion channel conductances. EMO selected good models
from each of the two model classes to form the two model archives.
Archived models showed tradeoffs across fitness functions. For
example, parameters that produced excellent F—/ fit produced a
less-optimal fit for interspike voltage trajectory. Because of these
tradeoffs, there was no single best model but rather models that
would be best for particular usages for either single neuron or
network explorations. Further exploration of exemplar models with
strong F-I fit demonstrated that both the detailed and simple
models produced excellent matches to the experimental data. Al-
though dendritic ion identities and densities cannot yet be fully
determined experimentally, we explored the consequences of a
demonstrated proximal to distal density gradient of /,,, demonstrat-
ing that this would lead to a gradient of resonance properties with
increased resonant frequencies more distally. We suggest that this
dynamical feature could serve to make the cell particularly respon-
sive to major frequency bands that differ by cortical layer.

NEW & NOTEWORTHY We developed models of motor cortex
corticospinal neurons that replicate in vitro dynamics, including hy-
perpolarization-induced sag and realistic firing patterns. Models dem-
onstrated resonance in response to synaptic stimulation, with reso-
nance frequency increasing in apical dendrites with increasing dis-
tance from soma, matching the increasing oscillation frequencies
spanning deep to superficial cortical layers. This gradient may enable
specific corticospinal neuron dendrites to entrain to relevant oscilla-

*S. A. Neymotin and B. A. Suter contributed equally to this work.

Address for reprint requests and other correspondence: S. A. Neymotin, Dept.
of Physiology & Pharmacology, SUNY Downstate Medical Center, 450 Clarkson
Ave. Box 31, Brooklyn, NY 11203 (e-mail: samn@neurosim.downstate.edu).

148 0022-3077/17 Copyright © 2017 the American Physiological Society

tions in different cortical layers, contributing to appropriate motor
output commands.

computer simulation; hyperpolarization-activated cyclic nucleotide-
gated channel; HCN channel; motor cortex; corticospinal neuron;
layer 5; neocortex

CORTICOSPINAL NEURONS (SPI) are the large pyramidal neurons in
motor cortex layer 5B (L5B) that project caudally via the
medullary pyramids to brainstem centers or directly to the
spinal cord (Suter et al. 2013). In the primary motor cortex,
these cells will provide output that may define or at least
influence motor commands. SPI neurons display distinct class-
specific electrophysiological properties in in vitro recordings.
The subthreshold properties are notable for strong sag with
hyperpolarization, providing evidence for high levels of I, the
anomalous rectifier (Sheets et al. 2011). SPI neurons also show
relatively brief action potentials (APs), with a lack of adapta-
tion with firing in response to current clamp and a nearly linear
frequency-current (F-I) relationship (Suter et al. 2013). These
physiological properties distinguish SPIs from the other excit-
atory cell population of L5, the corticostriatal cells, which also
differ anatomically by having smaller apical tufts. Along with
other excitatory cell types in neocortex, corticostriatal neurons
are involved in various loops via other telencephalic structures:
thalamus, striatum, cerebellum, and contralateral cortex. Un-
derstanding of the functional organization of motor cortex will
require knowledge of both corticospinal and corticostriatal
populations (Anderson et al. 2010; Kiritani et al. 2012; Api-
cella et al. 2012; Suter and Shepherd 2015; Yamawaki and
Shepherd 2015).

In addition to playing a critical role in projection out of the
motor cortex circuit, SPI neurons are remarkable in their size
and dendritic appearance. The large apical dendrite will play an
important role in determining input-output properties of this
cell type, with evidence pointing to a major role for /, in
modulating the efficacy of synaptic integration in the dendrites
(Sheets et al. 2011). Further evaluation of these properties will
require better understanding of the interplay of dendritic and
somatic voltage-sensitive ion channels in producing local
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membrane potentials and converting them to somatic and
axon-initial-segment depolarizations leading to APs. However,
dendritic localization and isomer identity of the voltage-sensi-
tive channel densities within dendrites cannot yet be deter-
mined with precision experimentally. Immunohistochemical
techniques show channel locations but give only a gross
estimate of density and do not show functional state. Dual
impalement of apical dendrite (at ~500 um) and soma
(Kole et al. 2006) gives limited information on oblique
dendrites and is very difficult due to small dendrite size.
Physiological and pharmacological manipulations are not
generally able to isolate particular channel types with pre-
cision even when these are accessible. Current-source den-
sity (CSD) assessments use extracellular electrodes that
record signals from dendrites but these then mix response
from apical and oblique dendrites, from multiple cells, and
from different channel types. Voltage-sensitive dye imaging
technologies are also not sensitive enough to obtain this type
of data at the required resolution.

Computational modeling provides a complementary ap-
proach for exploring the integrative properties of SPI neurons
and predicting the set of ion channels and biophysical mech-
anisms that contribute to their dynamics and function. Despite
the availability of numerous models that capture specific as-
pects of layer 5 pyramidal neuron electrical behavior (Hay et
al. 2011; Hu et al. 2009; Bahl et al. 2012; Almog and Korn-
green 2014), none of these models have captured the multi-
ple features that we have explored experimentally: 7,-de-
pendent sag and resonance, linear F—/ curve, nonadapting
firing rates, and fast APs (Suter et al. 2013). We therefore
started afresh, using optimization procedures to constrain
model dynamics to match the dynamics observed in our
electrophysiological data. In this way, we created a set of
models exhibiting optimality across one or more out of a set
of fitness functions. We used these functions to create
publicly available searchable archives of both detailed and
simplified (6-compartment) multicompartment models, giv-
ing users flexibility in selecting which SPI models one might
want to use in different contexts.

Our approach to optimization was to use a two-step se-
quence consisting of an adaptive coordinate descent algorithm
(PRAXIS) (Brent 1973; Carnevale and Hines 2006) for fitting
the passive properties (capacitance, resistivity, leak, etc.)
and the densities of channels contributing to subthreshold
responses, followed by evolutionary multiobjective optimi-
zation (EMO) (Deb 2001; Deb et al. 2002; Garrett 2014a,b)
to fit densities of other active channels to optimize particular
firing features. The first step in our approach produces a
resting membrane potential. The second step then more
easily molds firing patterns atop this stable resting mem-
brane potential.

Our models demonstrated several forms of /,-dependent
resonance as emergent dynamical features that were not spe-
cifically targeted by optimization. Subthreshold response to
somatic stimulation showed resonance between 4 and 6 Hz,
consistent with experiment (Sheets et al. 2011). Synaptic res-
onance frequency in the apical dendrite varied from about 7-20
Hz with a gradual increase up the apical dendrite (Silva et al.
1991), paralleling the increase in hyperpolarization-activated
cyclic nucleotide-gated (HCN) channel density with distance
from the soma. This resonance could allow the apical dendrites

to parse out primary activation frequencies that differ by
cortical layer.

MATERIALS AND METHODS
Animals and Slice Preparation

Animal studies were approved by the Animal Care and Use
Committee of Northwestern University. Mice (strain: C57B1/6J; Jack-
son Laboratories) underwent stereotaxic injections of retrograde trac-
ers (fluorescent microspheres) at postnatal day (P) 21, following
previously described methods. Animals were euthanized by anesthetic
overdose and decapitation, and brain slices (300 wm) containing
motor cortex were prepared one or more days after tracer injections
(P23-32). Slices were transferred to artificial cerebrospinal fluid
(ACSF, in mM: 127 NaCl, 25 NaHCO,;, 25 p-glucose, 2.5 KCl, 1
MgCl,, 2 CaCl,, and 1.25 NaH,PO;; aerated with 95% 0,-5% CO,),
maintained at 34°C for 30 min, and returned to room temperature for
at least 30 min before recording.

Electrophysiology

Brain slices were transferred to the recording chamber of an upright
microscope (Olympus BXS1WI) and superfused with recirculating
aerated ACSF warmed to 34°C. Fluorescently labeled SPI neurons
were targeted for somatic whole cell recordings using borosilicate patch
pipettes (tip resistance 2-4 MQ)) and a patch-clamp amplifier (Multi-
clamp 700B; Axon Instruments). Pipette capacitance was compensated
before breaking in, and in current-clamp mode the bridge was balanced
periodically using the auto-adjust feature. Series resistance was moni-
tored periodically in voltage-clamp mode by brief negative steps, and
recordings were terminated if it exceeded ~25 M().

Recordings were made in current-clamp mode with a potassium-
based internal solution (in mM: 128 KMeSO,, 10 HEPES, 1 K,-
EGTA, 4 MgCl,, 4 Na,-ATP, 0.4 Na-GTP, 10 Na,-phosphocreatine,
and 3 ascorbate; pH 7.3). The intracellular concentration of sodium
ion was 28.4 mM, and the calculated reversal potential for sodium was
44.6 mV. In some experiments biocytin (2—4 mg/ml) was added to the
internal solution. Traces were filtered online with the amplifier’s 10
kHz Bessel filter and digitized (16-bit resolution, USB-6259; National
Instruments) at 40 kHz. The modeled neuron’s recordings were
filtered at 4 kHz and sampled at 10 kHz; these data were excluded
from AP waveform analysis but included in firing rate analyses.
Experiments were controlled by open-source (www.ephus.org) Ephus
software on a workstation running Microsoft Windows (Suter et al.
2010). All data are reported after subtracting 10.5 mV from the
recorded membrane potential to compensate for a calculated liquid
junction potential.

Intrinsic properties were characterized by presenting families of
current steps (—200 to 600 pA in 50-pA increments, duration 1.0 s),
unless indicated otherwise. A holding potential (V,)) of about —80 mV
was maintained by constant current injection. A parallel data set was
collected at the resting membrane potential (V,). Because V, tended to
be close to V}, and because results from the two data sets were highly
consistent, the data presented are mostly from the V, data set, except
where indicated.

Sag of the membrane potential was calculated as the percentage
difference between the peak amplitude of the initial response
(0-0.1 s after step onset) relative to the peak amplitude of the
steady-state response (0.9-1.0 s), both measured with respect to
the baseline averaged over 0.3 s before step onset. We averaged a
5-ms window around the initial and the steady-state peak.

To quantify the shape of individual AP waveforms, we first
identified the threshold (in mV) as the point when dV/dr exceeded
10% of its maximum value, relative to a dV/dt baseline measured 2 ms
before the AP peak. The AP peak was taken as the maximum
membrane potential reached after threshold, and AP amplitude as the
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difference between threshold and peak. The AP width was measured
at half- and quarter-amplitudes with linear interpolation between
samples. The minimum and maximum dV/dt slopes were also used to
quantify AP shape.

Pharmacology

Synaptic blockers were added to the bath solution (10 uM NBQX,
5 uM CPP, and 10 uM gabazine; Tocris), except where noted.
Additional drugs to block voltage-gated ion channels were added
during the recordings from the modeled neuron, as noted: TTX (1
uM; Tocris), TEA (15 mM; Sigma), 4-AP (2.5 mM; Sigma), XE991
(10 uM; Tocris), and ZD7288 (25 uM; Tocris).

Morphological Reconstruction

After recordings were completed, brain slices containing biocytin-
filled neurons were returned to a holding chamber for 1-2 h at room
temperature, before fixing in 4% PFA-phosphate buffer (8% aqueous
paraformaldehyde diluted 1:1 with 0.2 M phosphate buffer) for ~16
h at 22°C (Fig. 1). After fixation, slices were rinsed thoroughly and
maintained in phosphate buffer, with daily solution changes until
further processing. To stain the recorded neurons for two-photon
fluorescence microscopy, slices were rinsed in Tris-buffered saline
(TBS, 7X, 5 min each), permeabilized in TBS-Triton (3%, 1 h),
blocked in normal goat serum (NGS; 10%) and BSA (bovine serum
albumin, 0.5%) in TBS for 30 min, rinsed in TBS (2X, 5 min each),
and stained with streptavidin-Alexa-488 conjugate (1:200; Invitrogen)
in TBS with NGS (1%) and BSA (0.5%) for ~16 h at 4°C. After being
stained, slices were rinsed in TBS (4 X, 5 min each) and mounted on
a #1 glass cover slip (0.17-mm thickness) in mounting medium
(Dako), using additional coverslips as spacers to avoid compression of
the tissue. Slides were sealed with nail polish. Samples were shielded
from light throughout these procedures.

A B C

Fig. 1. Morphological reconstruction of the representative corticospinal neu-
ron. A: 2-photon fluorescence image (maximum intensity projection) of a
corticospinal neuron filled intracellularly with fluorescent dye (green); the red
channel shows numerous corticospinal neurons retrogradely labeled with
fluorescent beads (red). B: 3-dimensional reconstruction of the same neuron.
Blue, dendrites; green, axon. C: dendrogram representation of the dendritic
arbor topology of the reconstructed neuron. Apical branches point upwards and
basal branches point downward. Vertical distance represents dendritic path
length; horizontal connectors are dimensionless.

Fluorescent neurons were imaged on a custom-built two-photon
laser-scanning microscope equipped with a X25 objective lens (nu-
merical aperture, 0.8; Zeiss), using the lens collar to compensate for
differences in index of refraction between the immersion medium
(glycerol), cover slip, and mounting medium. The laser was tuned to
810 nm to excite both the dye in the filled neuron and the retrograde
tracer for emission in separate channels. Pixels were 0.2 um (x and y
dimensions), and z-steps were 0.84 um. Image stack contained ~1.3
billion voxels, with typically three to four stacks required per neuron
for the entire dendritic arbor. For visualization, custom software
macros (Imagel; Fiji) automatically flattened the image stacks by
maximal intensity z-projection and stitched the resulting tiles starting
from stack coordinates recorded during image acquisition, with an
automatic optimization step for fine alignment. The stitching step
made use of a freely available algorithm (Preibisch et al. 2009). To
calibrate the scale of the resulting high-resolution image stacks,
epifluorescence images were taken with a X4 objective lens of the live
slice and of the fixed slice once mounted, and the x-y distance between
landmarks was compared.

Neuronal morphology was digitally reconstructed using Neurolucida
software (MBF Bioscience). Multiple image stacks were aligned in three
dimensions, the software was configured for the appropriate voxel size,
and the neuron was reconstructed manually. Dendrites and the axon were
reconstructed as a connected tree of tapered cylinders, and the soma was
reconstructed as a series of contours. Spines were not reconstructed. All
dendrites were reconstructed; the axonal reconstruction was limited to the
proximal intracortical portion of the main stem.

Modeling

Simulations were run in the NEURON (version 7.4) simulation
environment (Carnevale and Hines 2006).

Model Units

Throughout the paper, the following units are used for the different
model parameters and variables: voltages are given in millivolts
(mV); currents are given in nanoamps (nA); diameters (diam) and
lengths (L) are given in micrometers (um); conductance densities are
given in S/cm? unless indicated otherwise; capacitance density (cap)
is given in wF/cm?; permeability is given in cm/s; axial resistivity is
given in {)-cm; time-constants (7s) are given in milliseconds (ms); and
temperatures are given in °C.

Detailed Model

A representative SPI neuron was selected for detailed reconstruc-
tion and biophysical simulation. The morphological reconstruction
was exported from Neurolucida to an MBF ASC format file and then
imported into NEURON using the Import3D tool, which converted
the soma from contour lines to series of tapered cylinders and
established connections from each dendritic process to the center of
the soma. We confirmed the absence of any topologically or electri-
cally isolated sections and grouped the resulting morphology into
somatic, axonal, basal dendritic, and apical dendritic sections. Apical
dendrites were further subdivided into the following sections: main-
trunk (proximal to soma), oblique, uppertrunk (distal from soma), tuft,
before-branchpoint, and after-branchpoint. Here branchpoint is the
first main branch in the apical dendrite main trunk when moving from
soma towards tuft. Based on inspection of the two-photon images, all
dendritic sections except the proximal apical trunk (0-32 um) were
classified as spiny. The effect of spines was approximated by increas-
ing the membrane capacitance and the membrane leak conductance
(in all spiny sections) by a factor >1 that was among the passive
properties optimized during development of the model. In all other
respects passive properties were evenly distributed in all compart-
ments. The model neuron was composed of compartments. We have
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made the morphological reconstruction available at http:/neuromorpho.
org/neuron_info.jsp?neuron_name=BS0284, part of a larger set of SPI
neuron reconstructions (http://neuromorpho.org/KeywordResult.jsp?str=
suter_shepherd,corticospinal).

Simplified Model

A simplified (simple) model consisting of 6 compartments was also
developed for use in large network simulations. The six compartments
consisted of three apical dendrites (equivalent properties in each
compartment), one basal dendrite, one soma, and one axon.

Ion Channels and Ca®* Handling Mechanisms

Model neurons contained a passive leak channel, fast sodium
channel (Nay) for producing APs, three potassium channels (K, g, K,
and K,) for repolarization after AP and regulation of firing dynamics,
and two voltage-gated calcium channels (VGCC; L-type: CalL, N-
type: CaN) (Neymotin et al. 2016b) for further regulation of firing
dynamics and neuronal excitability. Model neurons contained an HCN
channel based on (Kole et al. 2006) (adjusted reversal potential E,, to
—37 mV), which contributed to sag, subthreshold dynamics, and
resonance. Model neurons also contained large-conductance BK cal-
cium-activated potassium currents based on (Stadler et al. 2014; Reetz
et al. 2014) for regulating AP shape.

Leak, Na™, and K" currents were represented by the conductance
approximation: fio, = gion'(V — E,,,) (g conductance; E reversal
potential) using Ey, of 42 mV and E, of —104 mV, calculated from
concentrations of ions in solution, and E,., optimized (described
below). The Goldman-Hodgkin-Katz (GHK) flux equation was used
for Ca®" currents: Io, = pc,sGHK(, (p permeability). Channel
dynamics were corrected for temperature by a O, using the factor of
gt = Q' 2"with T = 34°C and 25° was taken to be the temper-
ature at which the experiment for fitting original ion channel models
was done (unless noted otherwise). Conductances and activation
curves were not corrected for temperature (Iftinca et al. 2006).
Voltage-sensitive channels largely followed variants on the Hodgkin-

dx X ™ X
Huxley formalism, whereby U =

using steady-state value
X

[ .
Xy = , the 7, forms were either
ot Bo
, 1 _ B-
TEQNI LTy or TEQN2 LTy

gt (a,+ B Cgteay-(1+a)

where x is m or n for an activation variable and % for an inactivation
variable. F is Faraday’s constant; R is the gas constant. Variations on
this scheme are noted below.

L-type Ca®™ channel (Ca,). The Ca, variation is p; = py-m;-hy;

k;
2y =
Ykt Caly,
15.69-(— V+81.5)

with k; = 0.001 mM; m; : a,, = 5 Boe

exp((—V+81.5)/10.0)—1.0
0.29-exp(—V/10.86); Trpone With . = exp(0.0378-2-(V — 4)),
B, = exp(0.0378-2-0.1-(V — 4)); ay = 0.1; Q,, = 5.

N-type Ca’* channel (Ca,). The Cay variation is py =
P2y my used ., = 0.1967-(—V + 19.88)/(exp(—V +
19.88)/10.0) — 1.0); B.. = 0.046-exp(—V/20.73); Tegna with a, =
exp(0.0378:2-(V — (—14))); hy following: c,, = 1.6-10™ "-exp(— V/48.4);
B. = Uexp((—V + 39.0Y/10) + 1); constant 7, = 80; with
h2, = {0.001}/{0.001 + Cazyt}; a, = 0.03; Q) = 5.

Na channel. The Na channel variation is gy, = Znu s P M
using Tpon; With: @ = 0.4-(V + 30)/(1 — exp(— (V + 30)/7.2))
B =0.124-(=V = 30)/(1 — exp((V + 30)/7.2)) hy, with special form

with &, (inactivation) was Ca?" dependent: A, (Ca

h, =———————— and usi ith a, = 0.03.(V + 45
T Fexp((V+50)4) and using Tgpon; With ( )

/(1 — exp(—(V + 45)/1.5)) and B, = 0.01-(—=V — 45)/(1 — exp(—
(V = 45)/1.5)); O, = 2; experimental temperature = 24°C.
K, channel. The K, channel variation is gx4, = §xarkars "Kdr

|
following an atypical steady state: n, ZIT with o =
a

exp(10™3=3-(V = x4 V,,»)-9.648:10%/(8.315-(273.16 + T))) us-
ing the same a in Tgon, With B = exp(107°-=3.0.7-(V — ngq,
V,,,)9.648:10%/(8.315-(273.16 + T))); a, = 0.0075; Q,, = 1;
experimental temperature = 24°C; ng4.V,,, = 13 unless indicated
otherwise.

K, channel. The K, channel variation is gua = Zxalxalias fxa

with Tpon, and an atypical steady-state value: n., ZIT with a =

o
exp(1072-LV)(V — ngaV,,0)9.648-10%(8.315:273.16 + T))); LV) =

1.5 + (=11 + exp((V — tqe)/5);: BV) = exp(107-£(V)0.55
(V = ngaV,,,)9.64810%(8.315:273.16 + D)); ap = 0.05; Q)0 = 5.

= exp(107*=3(V — LeaVyp)-

9.648-10%/(8.315-(273.16 + T))); time constant: 7 = 0.26-(V + 50)-¢t;
0,0 = 1; experimental temperature = 24°C; n\V,,,= 35, g V1=

lxA: With steady state: [, =—; «
1+«

—56, tqa = —45 unless indicated otherwise.
K, channel. The K, channel variation is gxp = §xpkpkp; Mkp
1

with special form m_, =

= d tant =1;
(1+exp(—(V+25)/14)) ¢ comsiant Tm
1

hyp with special form 4.,

exp(0.004-(V+5))
qt-0.00058-(1+exp(0.02-(V+5)))

- (1+exp((V+100)/8)) and 7

with Q,, = 3; experimental tempera-

ture = 34°C.
BK channel. The BK channel variation iS ggx = 8gxMpk; M.. With
. PQca ) 1
special form m,, = with POca =

1+exp((Vhca—V)/17)’ 14+0.00002/[Ca]

201.75—Shiftyg

1+(0.00002/[Ca])~*420¥

The passive parameters (capacitive density, axial resistivity,
81eak> Erear) Were equal in all compartments of the detailed model.
For simplified models, g,.,, and capacitive density in each com-
partment type (apical dendrite, basal dendrite, soma, axon) were
set independently. Spiny capacitance factor (SCF) was used to
increase the capacitance and leak density in the spiny dendrite
compartments of the detailed model above the values in other
compartments.

Ion channels were distributed within neuronal compartments based
on the experimental literature. K 5, Na, K, channels were present with
uniform density in all compartments but increased by five times in the
axon to allow AP initiation. Somatic and dendritic compartments
additionally contained Ca;, Cay, BK, and HCN channels. K, was
present in the soma and at 20 times somatic density in the axon. The
axon contained only leak, Na, K,, K., and K ion channels. Basal
dendrites contained uniform density of all their channels. Apical
dendrite HCN channel density increased exponentially with distance
from soma until reaching the nexus with apical dendrite tufts, where
the HCN channel density plateaus at 0.00565 S/cm? (Harnett et al.
2015). This exponential increase of HCN channel density within the
main apical trunk was set to g,-exp(d/A,), where d is distance of the
apical dendrite compartment from soma and A, is the length constant,
defined as d,,,/10g(0.00565/2,), d,exus is distance from soma to
nexus (~300 wm), and g, is somatic HCN channel density.

Intracellular calcium concentration ([Ca], in mM) was linked to
voltage-gated calcium channel (VGCC) currents (Ca;, Cay) and
decayed exponentially with the following equation (Neymotin et al.

d[Ca]
2015):—= = = (10000)ic (2 Fdepthe,) + ([Cal.. = [Cal)/rc,).

and Vhca = Shifty, — 46.08 +
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ic, s transmembrane calcium current (nA), F is Faraday’s constant,
[Cal]., is steady-state calcium concentration (0.0002 mM), depth, is
depth of calcium shell (um), and 7, is the Ca®>* decay time constant
(ms).

Optimization

A two-step optimization procedure was used to produce model
dynamics comparable to those seen in vitro under somatic whole cell
current clamp experiments (—0.15 to 0.6 nA in 0.05-nA steps).

PRAXIS optimization. NEURON’s PRAXIS algorithm (Brent
1973, Carnevale and Hines 2006) was used in a preliminary step to fit
the following passive parameters: /) capacitive density; 2) axial
resistivity; 3) gieas 4) Elears ) &xps 0) &, at soma; and 7) initialization
voltage (V,,;). For the detailed model, PRAXIS also optimized SCF,
which scaled spiny compartment capacitance and leak conductance.
When optimizing the simplified models, which lacked realistic geom-
etry, we also allowed PRAXIS to modify diameter and length of
individual compartments. Sum of squared error between simulated
somatic voltage and in vitro somatic voltage was used as the fitness
function for all subthreshold current steps.

Evolutionary multiobjective optimization. In the second optimiza-
tion step, the inspyred Python library (Garrett 2014a,b) was used for
evolutionary multiobjective optimization (EMO) with the nondomi-
nated sorting genetic algorithm (NSGA2) (Deb 2001; Deb et al.
2002). NSGA2 uses crowding for replacement with binary tournament
selection to create population size (100) offspring and the Pareto
archival strategy (Garrett 2014a). NSGA2 aims to find a Pareto
optimal archive, consisting of the best solutions in the high-dimen-
sional fitness space. In a Pareto optimal set of models, an individual
model is better than another model if it is better than or equal to the
other model in all fitness functions and strictly better in at least one
fitness function (Konak et al. 2006; Garrett 2014a). This criterion is
used to determine whether an individual model is selected for entry
into the final archive, which only occurs if the model is at least as
good as the other models in the archive. For all runs of EMO, the
mutation rate was set to 0.2 and crossover rate was set to 1.0.

The same fitness functions were used in EMO for both simplified
and detailed models: /) firing-rate vs. current injection (F-I) curve
with sum of squared error of differences between experimental and
simulated curves; 2) interspike-interval (ISI) voltage: squared error
between experimental and simulated responses from corresponding
ISI voltage snippets, defined as voltage in between corresponding APs
in a train; 3) instantaneous firing rate: sum of squared differences
between time-series of inverse periods between successive APs; 4) AP
shape: weighted sum of absolute difference in 0.1-AP threshold +
0.1-maximum AP slope + 0.15-minimum AP slope + 0.15-AP dura-
tion at 25% maximum amplitude + 0.25-AP duration at 50% maxi-
mum amplitude + 0.25-AP peak. Sum takes absolute differences in
features between corresponding experimental and simulated APs. The
full measure takes average across all spikes in a train; 5) subthreshold
voltage: squared error between experimental and simulated somatic
voltages for subthreshold steps. These additional fitness functions
were used in EMO for the simplified model, to allow EMO to have
more flexibility in finding optimal fits for different AP shape features:
6) AP peak voltage; 7) AP duration: absolute difference at 25 and 50%
maximum amplitude; §) AP slope (sum of absolute difference be-
tween maximum/minimum 1st derivative of corresponding simulated
and experimental APs); and 9) AP threshold (absolute difference
between thresholds of corresponding simulated and experimental
APs).

The following model parameters were optimized for both types of
model: 1) Znup 2) 8kars 3) 8kas 4 8kpi ) Prs 0) Pn /) ek )
Shiftg; 9) depthe,; 10) 7,. When optimizing the simplified models,
we also allowed evolution to modity nyy.V,2 lkaVi/2 Pa Vi, and
tqxa for the greater flexibility needed to regulate the simplified
neuron’s excitability and AP shape. All parameter ranges used in

evolution were constrained within prespecified boundaries, which
expanded automatically during evolution when a good model had
values near the boundaries. Shift,, was optimized to adjust the BK
channel’s voltage dependence to limit BK’s role in dynamics to only
modulating AP shape.

We used the Neuroscience Gateway Portal high-performance com-
puters (HPC) (Sivagnanam et al. 2013) and our own HPC cluster to
run evolution over thousands of generations parallelized over 100—
200 cores. Simplified model neurons evolved over ~30,000 genera-
tions (1-3 min per generation) while detailed model neurons evolved
over 6,276 generations (15-20 min per generation). Populations
within a given generation consisted of 100 individuals (models).

Final Model Sets for Analysis

EMO evaluated 627,600 detailed models and over 2,998,900 sim-
ple models. As evolution progressed, the number of individuals in the
EMO archive increased with selection into the archive using the
Pareto archival strategy described above. Final evolutionary archives
of the detailed and simple models are included on ModelDB. Each
model in the archive includes its parameter values and fitness function
errors. Models in the archives were further analyzed and compared
using an overall scalar error. This error was measured as the vector
length in the high-dimensional fitness space determined by the error
for each of the individual fitness functions, after normalization by
division by the mean for that error.

Resonance

We tested neuronal resonance using two methods: /) impedance
amplitude profile (ZAP) using chirp current injections at soma; and 2)
ratio of somatic excitatory postsynaptic potentials (EPSP) output
under apical dendrite AMPA stimulation. Chirp stimulation was a
time-varying sinusoidal current injection with increasing frequency
over time. The frequencies ranged continuously from 1 to 15 Hz over
a 15-s duration and were applied at the soma (Sheets et al. 2011). To
calculate resonance, we computed the ratio of fast Fourier transform
(FFT) amplitude of somatic voltage (output) to FFT amplitude of
chirp input. This quantified how well the input frequencies were
represented in somatic voltage output. The synaptic stimulation pro-
tocol applied subthreshold AMPA stimulation (exponential rise, de-
cay: 0.05, 5.3 ms) at each apical dendrite independently over a range
of frequencies (1-30 Hz). We then calculated the EPSP response in
soma as the output. The frequency of AMPA stimulation which
produced the maximum EPSP response at the soma was defined as the
resonant frequency.

Software, Models, Morphologies, and Electrophysiology

All files comprising our models and final model sets, including mor-
phological and electrophysiological data, are available online. The exemplar
model, model archives, and somatic whole cell current clamp recordings are
available in ModelDB (Peterson et al. 1996; Migliore et al. 2003; Hines et
al. 2004): http://senselab.med.yale.edu/modeldb/ShowModel.cshtml?
model=195615. The evolutionary optimization code and fitness functions
are available in SimtoolDB: https://senselab.med.yale.edu/SimToolDB/
ShowTool.cshtml?tool=195665. The corticospinal reconstruction used in
this paper is available at NeuroMorpho (Ascoli et al. 2007) http:/
neuromorpho.org/neuron_info.jsp?neuron_name=BS0284 with a full set of
associated mouse M1 and S2 corticospinal morphologies available using
the following search: http:/neuromorpho.org/KeywordResult.jsp?str=
suter_shepherd,corticospinal.

RESULTS

We used a two-step optimization procedure consisting of
adaptive coordinate descent (PRAXIS algorithm) followed by
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evolutionary multiobjective optimization (EMO) with the
NSGA2 algorithm to create and assess over 625,000 multicom-
partment (706-compartment) models that were culled to pro-
duce a detailed-model archive of 9,804 useful models with
different degrees of fitness for the different fitness functions.
Similarly, 3,000,000 simplified (6-compartment) models were
culled to produce a simple model archive of 9724 models. We
have made these archives available on ModelDB (http://
senselab.med.yale.edu/modeldb/ShowModel.cshtml?model =
195615). The larger number of simple models evaluated re-
flects both the greater difficulty of getting fits with lesser
modulation from dendrites and the relative ease of running
large numbers due to the faster compute time for these smaller
models (0.5-s clocktime for simple, 17 s for complex model for
1 s at 7 Hz; 0.02 s, 2.5 s for subthreshold simulation).
Optimization of both models produced parameter values within
physiological ranges.

Diversity of Models in Final Archives

The archives included models that were optimized according
to five criteria, chosen so as to represent major aspects of cell
dynamics relevant to the activation of a cell in a network (Fig.
2). Firing rate as a function of current injection (called F—I here
rather than /-F to distinguish from integrate-and-fire acronym)
is perhaps the most widely used “classical” measure of excit-
ability. Interspike interval voltage trajectory (ISI voltage,
largely due to effects of K" currents on afterhyperpolarization)
complemented F—/I. By taking account of voltage variation
between spikes, ISI voltage regulates neuronal responsiveness
to synaptic inputs at different phases with ongoing spiking
activity. Instantaneous firing rate (IFR) is a measure closely
related to overall firing rate but one that takes account of a
spiking adaptation. Spike shape (SpSh), while not immediately
connected with cell responsiveness, is another indicator of the
adequacy of parameterization because it reflects major ionic
currents, particularly the gy, and gk, of the original Hodgkin-
Huxley equations. Finally, subthreshold stimulation voltage
trajectories (SubTh), consequent on passive parameters of leak
conductance and capacitance as well as I,, were revisited as

A B C

part of the EMO after being initially set by the PRAXIS
algorithm. This final fitness function was included to make sure
that passive properties did not deviate greatly through the
setting of the first four functions. In this paper, we primarily
focus on two examples from the archives with excellent F—/
fitness, which allows us to demonstrate robustness of the model
across different levels of current injection.

Models accepted into the archive showed adequate fit across
all measures, but some were more optimized for one or more
particular measures, whereas others had similar fitness across
all measures. Figure 2C is used here to provide the color code
for all five panels, showing a set of models that have high IFR
fitness (blue) and a set with poor IFR fitness (red). Some
models show excellent overall fitness (low values on y-axis)
and some models show relatively poor overall fitness (high
y-values). The U-shaped distributions seen in Fig. 2, A-C,
reflect the bimodal distribution of error in each of these single
measures. Figure 2A shows individual models that are highly
specialized for a particular measure; these are likely to not be
as good across all measures. Figure 2B shows models that are
particularly poor on a particular fitness function; these will end
up with a poor overall fitness score due to the poor individual
score. Figure 2C shows models that will be generally good
across all fitness scores and end up with best overall score, at
the nadir of these U-curves.

Figure 2, A and C, show increasing error in the same
direction (blue to red in color code). This similarity between
F-I (Fig. 2A) and IFR reflects the fact that both are based on
interspike interval duration. By contrast, error for fitting ISI
voltage trajectory (Fig. 2B) also shows a U-shaped curve, but
the error goes in the opposite direction. This is due to the fact
that closer fitting of the interval between spikes is done most
easily by manipulating currents, mostly using K* channels,
whose time constants most closely match the desired period.
These K* currents will then directly alter the voltage trajec-
tory. The opposition of these two fitness functions in our model
suggests that we are missing one or more channels, or channel
influences (e.g., the details of Ca>* handling for Ca®"-sensi-
tive K™ channels), that determine this trajectory (see DISCUS-
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Fig. 2. Models of the detailed models archive (n = 9,804) are optimized across all 5 fitness functions but demonstrate tradeoffs between full 5-dimensional error
(y-axis) and individual error (individual x-axes). Frequency-current relation (F-I; A), interspike interval voltage (ISI voltage; B), instantaneous firing rate (IFR;
C); spike shape (SpSh; D), and subthreshold activation voltage (SubTh; E). Log-log plots; color code based on the 5 error percentiles in C in order of increasing
percentiles (dark blue, light blue, green, orange, and red) causing overdrawing of some points in A, B, D, and E.
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sioN). There was no clear association of order error with spike
shape and subthreshold voltage (Fig. 2, D and E), both of
which occupied a narrower range of error values. The inter-
spike interval fitness tradeoff was due to K™ currents, includ-
ing I, (Fig. 3). Increasing g4, increased the ISI depth beyond
what was seen physiologically (red dot in Fig. 3, A and D, and
red trace in Fig. 3B), while augmenting duration providing
better fits to frequency across different amounts of current
clamp (Fig. 3, A and C). By contrast, the blue dot and blue trace
in Fig. 3 show good ISI voltage trajectory with worse F-I fit.
ISI voltage trajectory was not only affected by gy, but also by
other K™ channels, explaining the large number of models with
low ISI voltage error across a broad range of gy, values
(bottom of Fig. 3D). Tradeoffs similar to that seen here were
also observed in the simple model archive, but overall errors
were slightly higher (not shown).

Final model parameters were highly variable, demonstrating
the principle of parameter degeneracy (Edelman and Gally
2001; Golowasch et al. 2002; Prinz et al. 2004; Neymotin et al.
2016a): many different parameter combinations could produce
a given neural dynamics. Parameters acted in combination,
such that no one parameter was a good predictor of the
dynamics (Fig. 4). For any individual parameter, parameter
magnitude was not predictive for the overall quality of fitness,
assessed by comparing highest to lowest one percentile of the
archive for overall fitness quality (Fig. 4A, purple-up vs.
blue-down triangles). Furthermore, the top and bottom percen-
tiles, identified as a vector of parameter values across all of the
parameters, did not show much overlap (Fig. 4B), suggesting

A

log ISI Voltage Error

log FI Error

0.005

0.006 0.007

IKdr

that these locations did not form independent distinct clouds in
parameter space. By contrast, individual parameters did have
predictive power when looking at a single fitness function, here
F-I (Fig. 4, C and D). In addition to the influence of gyq, (Fig.
4C, Ist column, compare to Fig. 3C), gy, also had major
influence on this measure (Fig. 4C, 2nd column). These two
parameters were both bimodal for F-I, with segregation be-
tween the top and bottom percentiles. The models with highest
overall F—I fitness were associated with high values of gy, and
8xar High values provided a balance of strong positive and
strong negative feedback on spike production, permitting the
system to accelerate rapidly in either direction. The bottom
percentile from the archive had low gy, and low gy4. For
similar reasons, the best models also tended to have high
values of other conductances, but without segregation of top
and bottom (Fig. 4C, columns 2, 4, and 5). Self-similarity for
the F-I fitness function top and bottom parameter sets was
pronounced, particularly for the bottom one percentile (bottom
left square in Fig. 4D).

Exemplar Models Show Good F-I Fit

Selecting from each final-model archive, we focus now on
two exemplars, one detailed and one simple model, with
minimal F—I error to show quality of fit across different current
injections. The detailed model exemplar is that shown by a red
dot in Fig. 3; we selected a similar F—I -optimized model from
the simple-model archive for comparison. Parameter values for
these two models are provided in Table 1.
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0.007 0.008
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Fig. 3. Tradeoffs between firing rate (F—/) and interspike-interval (ISI) voltage errors in detailed model archive. A: F-I and ISI voltage error show inverse
relationship. B: somatic membrane potential in response to 0.3-nA current clamp corresponding to red and blue points in other panels. Black trace is experimental
data. C: F—I error decreases with increasing gyq. (¥ = —0.68; P < 0.001). D: subthreshold ISI Voltage error increases with gy, (r = 0.54; P < 0.001).
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Fig. 4. Distinct parameter values for top and bottom one percentile in detailed models archive. A: normalized parameter values for top (purple-up triangles) and
bottom (blue-down triangles) based on overall fitness across all measures. B: Pearson correlations between parameter vectors in A show weak intraclass similarity
(best-best: 0.18; worst-worst: 0.11; best-worst: —0.05). C: normalized parameter values for top (purple-up triangles) and bottom (blue-down triangles) based on
F—I fitness. D: Pearson correlations between parameter vectors in C show strong intraclass similarity with strong interclass dissimilarity (best-best: 0.56;
worst-worst: 0.86; best-worst: —0.62). (Parameter normalization by subtraction of mean and division by SD.)

Both the simple and detailed models accurately followed
the subthreshold voltage trajectories seen in the in vitro
experiments, replicating the noticeable I,-dependent sag
(Fig. 5). Before the current injection the models had stable
somatic resting membrane potentials near —80 mV. Current
injection produced a sharp transition in membrane potential
followed by a sag due to I, (HCN channel). I, opposed
hyperpolarization by opening and creating an inward current
and opposed depolarization by closing and thereby reducing
net inward current. After the current injection was turned off
membrane potential showed overshoot, again due to /. The
detailed model (red) had better overall fits to the subthresh-
old data, compared to the simplified model (blue). Sub-
threshold fit in this F—I-optimized model was not as good
with depolarization due to the effects of high K, currents,
which were increased in the F-I optimization (Fig. 4C,
columns 2-5).

Exemplar model neurons displayed similar firing patterns to
those observed in vitro (Fig. 6). All model neurons had AP
threshold at 0.3-nA current injection, which produced a 7-Hz
firing, identical to experiment. Spike trains were weakly adapt-
ing at high current injections, showing some adaptation after
the first one to two spikes with nearly constant ISIs thereafter.
Model neurons displayed nearly linear increases in firing rates,

from 7 to 38 Hz, with increasing current injection from 0.3 to
0.6 nA (Fig. 7).

Somatic and Synaptic Resonance

Although the models were not optimized for resonance
dynamics, the exemplar models displayed resonance with sub-
threshold chirp stimulation at the soma (Fig. 8). Peak reso-
nance was at 4.7 Hz for the detailed model and 5.8 Hz for the
simple model, comparable to the 4.2 Hz value seen experimen-
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Table 1.

Parameters of exemplar models optimized for F-1

Parameter Simple Detailed
Axial resistivity, ()-cm 114.51 137.49
Capacitance density, uF/cm? — 0.7
Spiny capacitance factor (SCF; unitless) —— 1.48
Vini MV —75.04 —70.04
E\eao mV —88.54 —90.22
Brea> Slem? — 0.0260 - 1073
Apical dend diam, wm 1.58 —
Apical dend L, pm 261.90 —
Apical dend cap, uF/cm? 1.03 —
Apical dend 3., S/cm? 0.93-1073 —
Basal dend diam, wm 2.28 —
Basal dend L, um 299.81 —
Basal dend cap, uF/cm? 1.90 —
Basal dend 3., S/cm? 0.76 - 1073 —
Soma diam, wm 28.21 —
Soma L, um 48.41 —_
Soma cap, wF/cm? 1.79 —
Soma 3., S/cm? 0.54-1073 —
Axon diam, um 1.41 —
Axon L, pm 594.29 —
Axon cap, uF/cm? 1.01 —
Axon g, S/cm? 0.25-1073 —
Znw S/cm? 34.5117-107%  15.3130-107°
gy, Slem? 0.1410-107*  0.0661 - 1073
Zxp» Slem? 0.4474-107%  1.1091-107?
Zrap Slem? 13.1104 - 1073 8.4716-1073
ngarV1 MV 11.64 —
Zxa, S/cm? 89.8600 - 1073 61.4003 - 1077
IxaVi/, mV —59.79 —
ngaVip, mV 32.79 —
tqx A, MV —52.10 —
Zpx» S/em 0.0510-107%  0.0725- 1073
Shiftg,, mV 43.89 46.97
P, c/s 44.107° 57-107°
Do €M/s 46-10°° 47-10°°
Tea MS 99.11 16.02
depth,, um 0.12 0.10

Voltages are given in mV; diameters (diam) and lengths (L) are given in um;
conductance densities are given in S/cm? unless indicated otherwise; capacitance
density (cap) is given in uF/cm? permeability is given in cm/s; - indicates
parameter value not optimized or not applicable. F—I, frequency-current; dend,
dendritic; cap, capacitance density.

tally (Sheets et al. 2011). With /,, turned off, this resonance was
abolished.

Variable frequency subthreshold synaptic stimulation in in-
dividual apical dendrites demonstrated how this resonance
could have functional implications for transformation of syn-
aptic inputs (Fig. 8B). Exemplar models showed an increase in
resonant frequency from ~8-17 Hz with distance from the
soma. The resonance gradient corresponded to the HCN chan-
nel density gradient up the apical dendrites, which reaches a
maximum at the nexus before the apical tuft (Harnett et al.
2015). Beyond the nexus, the flattening of HCN channel
density produced a flattening in resonant frequency at ~16-17
Hz. Blocking [, eliminated the resonance gradient (X sym-
bols).

DISCUSSION

In vitro whole cell somatic voltage recordings were used to
develop computer models of SPI neurons at two levels of
complexity: /) a detailed morphological reconstruction of a
SPI neuron with over 700 compartments representing the full
apical and basal dendritic tree, soma, and abbreviated axon;

and 2) a reduced six-compartment model neuron with repre-
sentative apical and basal dendrites, a soma, and an axon.
Detailed and simple model neurons captured key intrinsic
electrophysiological properties observed in vitro: sag potentials
due to 1, (Fig. 5), nonadapting firing during trains (Fig. 6),
linear F—I relationships (Fig. 7), and F-I -dependent resonance
(Fig. 8).

Simulations Suggest Need for Additional Depolarizing
Influences

We based all ion channel distribution on the experimental
literature (Kole et al. 2006; Harnett et al. 2013, 2015; Migliore
and Shepherd 2002). By limiting ourselves to documented
channels, we are likely to have omitted channels that are
present in SPI cells but have not yet been documented. Further
difficulties arise in dendrites where channel identities and
densities are difficult to assess experimentally. Channels may
have been missed experimentally for several reasons: /) influ-
ential channels may be present some short distance out in the
dendrites, allowing them to have an influence on somatic
trajectories yet not be readily identifiable via somatic voltage
clamp due to lack of space clamp; 2) some channels do not
have clean blockers, making them difficult to identify pharma-
cologically; 3) different channel isomers may be present in the
soma or proximal dendrites, which have activation properties,
inactivation properties, and time constants different from the
canonical version of the channel which may have been mea-
sured in other species, other ages, other brain regions, and
other pyramidal cell subtypes; and 4) some channel effects may
be due to different phosphorylation states of identified chan-
nels, making them more difficult to identify in a slice where
these states cannot be readily manipulated.

Further evidence for the hypothesized missing channels
comes from the simulations. Voltage trajectories were not
precisely fit, as seen in interspike interval voltage (Fig. 3B),
depolarized subthreshold trajectories (Fig. 5) and spike shape
(not shown). In each of these cases, there appeared to
be difficulty achieving an adequate degree of depolarization.
We therefore predict that the models are missing one or more
additional depolarizing influences. Specific depolarizing cur-
rents that we suspect may play a role in balancing out the
hyperpolarizing influences of K, channels would include I,
T-type low-threshold activated Ca>* channel: Inaps PETSiStENt
Na™ current; and /5, Nonspecific cation channel. We also did
not explicitly explore backpropagating APs, which will depend
on densities of depolarizing dendritic channels.

Choice of Optimization Algorithms and Fitness Functions

There are a large variety of fitting and optimization tools
available to the modeler, and each of these tools has many
variants (Bahl et al. 2012; Jolivet et al. 2004, 2008; Van Geit
et al. 2007). Selecting a good fitness tool is not easy, and it is
in some cases desirable to use an optimization to find the better
(never alas best) optimization algorithm or to set the specific
parameters (learning rate, subpopulation selection criteria,
etc.). We have done this type of optimization-optimization
previously in discovering the learning parameters for a biomi-
metic learning model (reinforcement learning) using a genetic
algorithm (Dura-Bernal et al. 2016). We note that these strat-
egies have the potential for infinite regress: who shall optimize
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Fig. 5. Corticospinal neuron (SPI) models replicate in
- —— Experiment vitro subthreshold responses to current injections, includ-
IE ing bidirectional /,-dependent sag in somatic membrane
0 — Detailed potential. The 1-s subthreshold somatic current injection
oo me N §tz_1rts Aat 500 ms (—0.1, —0.05, 0.05, and 0.1-nA currer_lt
—— Simple injections arrayed from bottom to top). Black: experi-
ment; red: detailed SPI neuron model; blue: simplified

SPI neuron model.
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for choice of the optimization-optimization algorithms them-
selves?

In the present instance, we devised a two-step optimization
procedure. We started with PRAXIS to determine initial pas-
sive parameters (e.g., capacitance, axial resistivity) by adaptive
coordinate descent. This first step produced a relatively stable
resting membrane potential from which firing properties could
be molded. Strong nonlinearities, at whose heart lies the
phenomenon of the spike threshold, militates against using any
such continuous progression through parameter space to con-
verge dynamics onto the other fitness functions, those for
spiking and interspike trajectories. These nonlinearities instead
suggested the use of algorithms in the genetic algorithm fam-
ily, such as the evolutionary multiobjective optimization
(EMO) used here, to move discontinuously in parameter space.
We used EMO in this second stage to search broadly in the
large parameter space of multiple ion channels. Our approach
was able to optimize models of different degrees of complex-
ity, simple and detailed, equally well.

Next, we must consider our selection of fitness functions
(Van Geit et al. 2008, 2016). The models in the archives
reflected competitive pressures between different fitness func-
tions (Fig. 3) for selecting specific parameter values. For
example, F-I and ISI voltage error were inversely correlated
because high gg,. was required for good F-I fit (to reduce
hyperexcitability) but produced overhyperpolarization in be-
tween spikes, reducing ISI voltage fit. These tradeoffs demon-
strate the multifactorial dynamic landscape that our neuronal
models occupy and the difficulty of finding a best model. One
approach to finding the best is to combine the different fitness
scores, possibly with different weightings, to produce a single
scalar value (Rumbell et al. 2016). Our approach was to select
many different best models based on exhibiting desired dy-
namical features singly or in combination. Because our aim is
make the models useful for incorporation into network models,
we focused on F-I response as a surrogate for this cell type’s
likely responsivity to ongoing background activation. Respon-

siveness to irregular background activity, rather than current
clamp, might provide a better indicator for this (Mainen and
Sejnowski 1995).

In general, one chooses fitness functions that complement
one another. Because of the complementarity, the fitness func-
tions pushed channel densities in different directions, as shown
in Figs. 2, B and C, and 3. Focusing on spike times, we also
provided some fitness function redundancy by using both
overall spiking rate (F-I), along with spike timing [instanta-
neous firing rate (IFR)]. The degree of redundancy of these two
measures was demonstrated in the final archive (Fig. 2, A and
C). We included subthreshold fit, determined initially by
PRAXIS, as an EMO fitness function as well so as not to lose
fitness for this criterion while optimizing for the others.

Depending on the type of measure being fit, there are
multiple different methods for designing the fitness function. In
the case of subthreshold voltage trajectory with current clamp,
for example, the fitness function could be a simple least-mean-
squared-error fit to voltage. For looking at spiking, the function
ignored voltage, utilizing spike times. For interspike voltage
trajectories, the fitness function was made more complicated
by the need to fit the pattern of depolarization and hyperpo-
larization even in cases where the interspike interval was not
precisely fit. Spike form was one of the more difficult fitness
functions, one for which we tried a number of possibilities,
finally utilizing a pattern matching algorithm making use of
target voltage forms.

The Public Archive: Opportunities and Caveats

In contrast to the classical approach of developing an indi-
vidual model that exhibits excellence across a desired set of
fitness functions, using a database or ensemble of models
allows exploring how different parameters contribute to di-
verse dynamics and allows determining tradeoffs between
different fitness functions (Giinay et al. 2008, 2009; Prinz et al.
2003). Databases also afford simulating and comparing a set of
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Fig. 6. SPI model neurons replicate in vitro firing patterns. Detailed (B) and simplified (C) model neurons replicate in vitro (A) firing patterns (1-s somatic current
injections from 0.25-0.60 nA in 0.05-nA increments from bottom to top). Action potential threshold is at 0.30-nA somatic current injection (2nd trace from
bottom). Black: experiment; red: detailed SPI neuron model; blue: simplified SPI neuron model.

models under novel conditions that were not initially used in
the optimization. Recent research has demonstrated that a
subset of models will fail when tested with input conditions or
activation functions that differ from those for which they were
optimized (Holmes et al. 2006; Almog and Korngreen 2016).

There are several ways to populate model databases, ranging
from multidimensional grid search to EMO algorithms. Grid
search samples all parameter space equally, while EMO hones
in on areas of particular parameter space and can get caught in
local minima. A recent study used an exhaustive multidimen-
sional grid search to sample parameters of detailed compart-
mental models of hippocampal interneurons, and offered pre-
dictions on the distribution of HCN channels in dendrites
(Sekulic et al. 2014, 2015). It is also possible to extend
previously existing databases with new dynamical features.
One such study on leech heart interneuron models added

nonlinear dynamic features to a preexisting database and then
determined factors that contribute to neuronal multistability
(Marin et al. 2013; Doloc-Mihu and Calabrese 2011). Previous
work used EMO to populate a database of cortical layer 5b
pyramidal neurons, which displayed multiple realistic dynam-
ics in the dendrites (backpropagating APs, calcium spikes, etc.)
(Hay et al. 2011). Our approach was to also use EMO to create
an archive and then hone in on models of interest for detailed
exploration of their dynamics.

We have made our two model archives, each with ~10,000
models, available in their entirety for public use as building
blocks to be incorporated into neocortical models. Many users
will elect to keep things consistent within a network by picking
only a single model, whether a detailed model or a simplified
one, and replicating that model multiple times to produce the
SPI population for their network. In this case, we would
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Fig. 7. Exemplar models showed linear firing frequency-current (F-I) relation-
ship with firing threshold at 0.3-nA somatic current injection.

suggest using one of the two exemplar models demonstrated in
Figs. 6 and 7, which would be expected to provide the best
approximation of excitability. Other users might instead elect
to work with models that show better subthreshold or inter-
spike fitness, perhaps to explore issues of activity resonance,
whether in the single cell or in the network (see Fig. 8). In
some network settings, it may turn out that models with more
accurate resonant properties would produce more accurate
patterns of population activity than would models with more
accurate excitability under current clamp. This would be ex-
pected in settings where irregular ongoing background activity
produces an irregular membrane potential near threshold. In this
case, spikes would occur at peaks determined by some combina-
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tion of the background activity and intrinsic resonance and would
not be related to the timing seen with constant current injection
(Mainen and Sejnowski 1995). Alternatively, it may be found that
models with balanced fits across fitness functions are better for
replicating network physiology. This determination will be made
empirically by in silico experimentation with implications for
physiological experiments that aim to produce single cell data,
typically from an in vitro preparation, which is relevant to a cell’s
physiological behavior in vivo.

The principle of degeneracy, shown here again, states that
diverse parameter sets can produce similar dynamical behav-
iors (Golowasch et al. 2002; Prinz et al. 2004; Neymotin et al.
2016a). Consideration of this principle suggests an alternative
approach to neuronal network design that would embrace
diversity by including many different models with different
parameterizations in a network. A set of differently parame-
terized models could be chosen that all illustrate strong fitness
in one area, be that firing rate or subthreshold properties. A still
more diverse population could be selected that would represent
fitness across different dynamical aspects. A further use of
multiple models would be to confirm model robustness by
utilizing multiple different models and confirming similar
behavior, just as one utilizes multiple random seeds when
assessing robustness in a simulation whose activity is in part
determined by random wiring or randomly generated drive.

These diverse models can also be compared with measured
physiological population diversity in SPI cells (Suter et al.
2013, Table 1). Substantial variability is seen in several of the
measures used for our fitness assessment, including sag of
20.0 * 3.6% (mV = SD), input resistance of 35.7 = 7.6 (M(}),
and F-I slope of 115 *£ 29 (Hz/nA). This variability is seen
despite common recording conditions: same species, same
strain, same temperature, same age (Tripathy et al. 2015). The
degree of heterogeneity could also be used as an additional
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Fig. 8. Exemplar neurons show somatic and dendritic resonance. A: subthreshold chirp somatic current input produces peak voltage resonance between ~4 and
6 Hz in models and experiment (impedance Z measured as ratio of oscillatory V/I power; see MATERIALS AND METHODS). Vertical dotted lines indicate resonant
peak frequencies. B: synaptic resonance based on apical dendrite distance from soma measured as apical dendrite AMPA stimulation that produces maximal
excitatory postsynaptic potentials (EPSP) amplitude in soma for /, on (@) vs. [, off (X).
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criterion for selection of models for the archives. Ensemble
methods could thereby offer further predictive power over the
traditional one-model-fits-all strategy. Technically, mainte-
nance and fitting of heterogeneity would also be useful since
lack of diversity during EMO can prevent further improve-
ments across multiple fitness functions. It would also be
interesting to conduct further studies to determine whether
some of the variability in particular measures could be ex-
plained by the tradeoff across measures that we note above.
The model archive will suggest underlying parameter associ-
ations that could explain dynamic variability, e.g., an obvious
prediction is that variability in density of somatic 7, will largely
predict the variability in sag measured from the soma. Changes
in dynamics as well as change in degree of variability are
observed across maturation and could also be correlated with
model variability overall and on a measure-by-measure basis.

Input Resonance

I, played a prominent role in several dynamical features in both
detailed and simple models, producing the characteristic sag with
hyperpolarization and contributing to interspike voltage trajectory.
I, also provided band-pass filtering of artificial inputs producing
peak resonant frequencies (4—6 Hz) similar to those observed in
vitro (Fig. 8). This represents a dynamical property that was not
explicitly fit and that emerged from a combination of the fitting of
subthreshold responses and interspike voltage trajectories and the
intrinsic dynamics of the ,, current itself.

Our results predict that the presence of increasing I, density
along the apical dendrite would produce a corresponding gra-
dient of resonant frequencies, increasing with distance from the
soma. This differential resonance would then provide differ-
ential responsiveness to particular patterns or ongoing frequen-
cies of synaptic input at different cortical layers. Such a
dynamical gradient of resonant frequencies would provide a
novel signal processing function to these dendrites, which
would then be tuned to respond to this frequency whether
delivered to the layer by remote excitatory projections, inter-
laminar excitatory projections, intralaminar excitatory projec-
tions, or local inhibitory projections. Activating a particular
section of dendrite at its characteristic stimulation frequency
would augment voltage and calcium locally, potentially lead-
ing to local plasticity events, including plasticity involving I,
itself (Neymotin et al. 2013a, 2014, 2016). Additionally, this
local depolarization would increase the chances of that cell
generating a spike. Activating two or more layers at their
different stimulation frequencies would be expected to further
increase this output probability. In this way the SPI pyramidal
neurons would have the ability to parse input frequencies in a
layer-dependent manner. This mechanism is similar to one
described previously by (Laudanski et al. 2014), although we
were looking at far lower stimulation frequencies.

Different cortical layers utilize different frequencies for
receiving and processing incoming information (Schroeder and
Lakatos 2009; Lakatos et al. 2008, 2013, 2016). The general
pattern that has emerged across several brain areas involves
beta and gamma superficially (layer 2/3; supragranular in
sensory areas) with lower frequencies, particularly alpha, deep
(LS; infragranular) (Lundqvist et al. 2006; Silva et al. 1991;
Ainsworth et al. 2011). Passing through these laminae, we
would then a priori predict that apical dendrites would be tuned

to respond optimally to the high gamma frequencies distally
and lower alpha frequencies more proximally, matching reso-
nance to the layer traversed. Although we found this pattern of
lower to higher frequency proximal to distal, the frequencies
that our model predict, alpha to low-beta ranges, do not match
the spread of frequencies, up to gamma, expected from this
physiological conjecture. We would expect that, as greater
fidelity to dendritic physiology comes with improved knowl-
edge of dendritic channel densities and types, these predictions
will match. Experimentally, correlations between laminar pop-
ulation oscillation and apical dendrite resonance frequencies
could be tested using laminar electrode arrays to span cortical
layers and compare local field potentials, reflecting the former,
with current source density, reflecting the latter (Mo et al.
2011; Neymotin et al. 2013b; Lakatos et al. 2014).
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