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Brief History

Computational neuroscience is made up of a variety of strands, sometimes

competing with one another for dominance. The strands have arisen due to the

confluence of a set of different founding fields with different approaches and

assumptions – engineering, math, physics, biology, computer science, psychology,

and others. Another factor that has contributed to the failure of the strands to

congeal into a single field is the lack of major recent success in any one of them.

A crucial breakthrough in our understanding of the brain would set up a clear

research direction (“a dominant paradigm” in Kuhn’s phrase) that other researchers

would readily follow.

The following strands can be identified: (1) Computational neuroscience arising

from computer science. This strand focuses on the computational capacities of

brain-like networks. This strand has given rise to the field of artificial neural

networks (ANNs). (2) Theoretical neuroscience arising from physics. This strand

attempts to understand neural systems in the context of closed-form solutions:

simple but potent sets of equations that describe the basics of a system. Ideas in

this strand tend to parallel those in other branches of physics, such as statistical

mechanics, chaos theory, and wave theory. In these studies, computer models are

typically used as a tool but are not an end in and of themselves. A major success in

this strand has been the development of the notion of attractors in the nervous system,

an idea that can be traced back to Hopfield. (3) Systems biology arising from the

many ‘omes: genome, proteome, interactome, etc. These studies yield vast quantities

W.W. Lytton (*) • C.C. Kerr

Physiology and Pharmacology, State University of New York Downstate Medical Center,

Brooklyn, NY, USA

e-mail: billl@neurosim.downstate.edu, cliffk@neurosim.downstate.edu

D.W. Pfaff (ed.), Neuroscience in the 21st Century,
DOI 10.1007/978-1-4614-1997-6_86, # Springer Science+Business Media, LLC 2013

2275

mailto:billl@neurosim.downstate.edu
mailto:cliffk@neurosim.downstate.edu


of information that cannot be manually organized but must be pulled together in

databases (bioinformatics). From there, they can only be understood as a system by

using computational models that revivify the data by putting them in relative context.

Neuroinformatics and multiscale brain modeling are active approaches that have

arisen from this strand. (4) Biophysical computation arising from the grand traditions

of a line of famous Nobel Prize winners: Hartline, Ratliffe, Hodgkin, Huxley, and

others. The basis of this approach is in the functioning of the single nerve cell with an

emphasis on its electrical characteristics. Part of the reason for this electrical bias is

that the founders of this strand were electrophysiologists who built their own ampli-

fiers and were therefore very conversant with electrical representations.

Overall, the four strands can be characterized as to whether they are top-down or

bottom-up. The top-down approach arises from an engineering perspective: design

a machine to perform a particular task. If you are interested in intelligence, then

design an artificial intelligence machine. The top-down approach is mostly utilized

in strands 1 and 2. The bottom-up perspective is the province of the phenomenol-

ogist or the taxonomist: collect data and organize it. This is the approach in strands

3 and 4. This chapter, on neuron modeling, primarily takes the perspective of

strand 4. The next chapter, on neuronal network modeling, widens out to include

strand 3. The perspectives of strand 1 and 2 are underrepresented here. A good

introduction to strand 1 is the first section of the textbook by Lytton or the more

detailed treatment by Hertz, Krogh, and Palmer. A good introduction to strand 2 is

Dayan and Abbott. While the choice of focus here may seem to be an endorsement

of bottom-up thinking, it should not be taken this way. Overall, the authors regard

a middle-out, and multiscale, approach as best, incorporating top-down thinking

while creatively utilizing bottom-up data. This perspective will become more

apparent in the next chapter. We have taken the bottom-up approach in this chapter

for didactic reasons: it is prudent to start with the basics. These basics will take us

from chemistry and biochemistry, through electrical engineering, into numerical

calculus, and emerge finally into an account of the electrical activity of a neuron.

One key advantage of computational study is its accessibility. Unlike other areas

of science, computational study does not require specialized equipment. All of the

simulations shown in this chapter can be readily performed on a small laptop.

Several of these are available as the simulations that accompany the textbook From
Computer to Brain. This chapter focuses on computational techniques. This will

allow the reader to really understand the thinking underlying the science rather than

simply seeing the results.

Modeling Membranes: The Conceptual Model

The cell exists because it has managed to separate its inside from the outside.

Within a neuron, as in other eukaryotic cells, the cell is a bag of jelly within which

are other bags of jelly: nucleus, mitochondria, endoplasmic reticulum, etc. Just like

gelatin that you eat, this jelly is made up of proteins and water. The key to the

electrical properties of biological tissue is that this water is salt water and the ions of
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these salts conduct electricity. These ions, electrically charged particles, are either

positive (Na+, K+, Ca++, and others) or negative (Cl� and HCO3
�). Charge makes

the ion hydrophilic since the hydrogen of H2O will form hydrogen bonds with the

negative charge, while the oxygen will stay near a positive charge. Fat will only

accommodate uncharged molecules. Therefore, the ions and other charged proteins

can move around freely in either extracellular or intracellular space. With salt water

both inside and outside, electricity flows freely through these media. The mem-

brane, however, is fat, also called lipid. Ions will not pass through fat unaided, just

as oil (fatty) and water (dipolar, hence piecewise charged) do not mix. In fact, the

fancy word for fatty is hydrophobic: water-fearing. Correspondingly, the salt water
is a hydrophilic (water-loving) zone. Conversely, one can speak of substances as

being lipophilic or lipophobic relative to lipid. Some proteins are hydrophobic and

can float around within the membrane itself. They are trapped there and will not

move into the water on either side. Other proteins are purely hydrophilic and float

around in the cytoplasm inside the cell. Other proteins have both hydrophilic and

hydrophobic parts and thus join or span the membrane.

Figure 75.1 shows the standard model of the cell membrane. The fatty part of

each phospholipid molecule points into the interior of the membrane (labeled as

intramembranous), away from the water that is both inside and outside. Lipophilic

substances can float around inside the membrane. The cross-hatched green-orange

object in the figure is lipophilic (hydrophobic), either a protein or an intramembrane

chemical messenger. In general, proteins are the active machinery of cells, involved

ions

intramembrane
(lipophilic)

intracellular
(hydrophilic)

extracellular
(hydrophilic)

pore

Fig. 75.1 The cell membrane (blue) has an intramembranous lipid interior made of phospholipid

tails. On either side of the membrane, the environment is hydrophilic (watery) and can accommo-

date positive (red) and negative (purple) ions that carry current. This is also where hydrophilic

proteins are found. Lipophilic proteins (green-orange ellipse) and other lipophilic substances can

float around inside the membrane. Membrane-spanning proteins have both lipophilic and hydro-

philic parts and orient themselves across the membrane (white). They can form pores or tunnels

(red) that allow ions to move in or out of the cell
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in metabolism, cell reproduction, and practically every other function. A special-

ized protein, a membrane-spanning protein pore, is also shown in Fig. 75.1. This

protein will align itself according to its hydrophilic and hydrophobic parts. In so

doing, the protein can provide a tunnel that allows ions to pass through from inside

to outside or vice versa. Note that ions cannot move directly across the membrane

but only flow through these protein pores. The membrane-spanning proteins are

very sophisticated machines. They can open and close according to different

signals, thereby allowing ions to either enter or not.

Modeling Transformation #1: From Membrane to Electrical

As noted above, there are many types and styles of modeling. One important aspect

of the problem that determines the modeling approach is the scale of the model

required. At the nanoscale, separate models have been developed to describe the

extracellular space, to describe the intramembranous lipid environment, and to

describe individual pores and even parts of pores. This chapter explores computer

modeling at this scale. However, notice that Fig. 75.1 is itself a model, a conceptual

model portrayed graphically and verbally. This conceptual model is a necessary

first step in translating a physical system to a computational model. In this instance,

the conceptual model provides connections between the concepts (and models, if

they exist) of pores, membranes, cytoplasm, and extracellular space. Notice that

descriptions like this are both model and metaphor: extracellular space is jelly,

proteins form tunnels. You will notice that these models/metaphors necessarily

always lack detail and are always in some degree inaccurate. This is a general

property of models that is often not appreciated: they are limited. They are never

quite right. However, they can be useful when they are “right enough.”

We now make the transition from one limited model to another limited model.

The model in Fig. 75.1 becomes the model in Fig. 75.2. The extracellular fluid

becomes ground, a place where current can always be either placed or taken from (a

sink or source for current). The pore becomes a resistor (also called a conductor) – it

allows current to pass but somewhat limits its passage. In some cases, this resistor

will be a variable resistor (“rheostat”), with the possibility of controlling the amount

of current that is allowed to pass through. The cytoplasm is highly conductive so

can be represented just as a wire connector. The lipid membrane itself serves as an

insulator tucked in between two electrically conducting plates. This is the design of

a capacitor. In electronics, a capacitor is built by placing an insulating material

between two parallel metal plates that are attached to the wire leads of the capacitor.

Since these plates do not touch, electricity (charge) does not pass directly through

the capacitor, but flows indirectly as one plate induces electrical flow in the other

plate. The two parallel lines in the standard symbol for the capacitor (Fig. 75.2)

represent these two plates. A capacitor has special properties which are of interest in

our understanding of the nervous system, a first stage of providing a connection

between mechanism and function. Capacitance provides a low-level, short-lived

form of memory.
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Ions moving through water carry charge. Movement of charge is called current.

Benjamin Franklin’s definition, still used, defines positive current as the movement

of positive charge. This seems counterintuitive in metal wires, where the charge

carriers are the negative electrons. However, some of the biological carriers are

positive ions: Na+, K+, and Ca++. Current flows through wires freely and through

resistors with some resistance (hence the name). Charge is neither created or

destroyed (Kirchhoff’s law), but ground provides a place from which current can

always be obtained or placed. Kirchhoff’s law will be particularly important for

making the modeling transformation #2, from the circuit diagram to algebra.

Kirchhoff’s law tells us that current placed anywhere in the circuit has to go

somewhere, i.e., conservation of current. Like the laws of conservation of mass

and energy in their respective domains, this law says that all stuff comes from

somewhere and goes somewhere. Kirchhoff’s law says that current recycling is

required as long as you stay within the circuit. Note that current does not disappear

when going to ground, it just dissipates. Ground is an inexhaustible landfill: in any

circuit which is grounded, current will eventually go to ground.

Figure 75.3 shows how Kirchhoff’s law is applied. Current (I) is measured in

amperes (amps or A), which represents flow of charge (Q) over time. If a circuit

divides into two wires, as here, the current will divide equally where the two wires

separate. Half of the 3 amps go down one branch and other half go down the other.

When the wires come back together, the currents add back up. Charge is conserved;

current is conserved. From the positive voltage (or potential) at the bottom of

Fig. 75.3, positive current flows “downhill” to ground. Ground always remains at

0 V (by definition). Conversely, if the side of the circuit away from the ground were

pore
(resistor)

lipid membrane
(capacitor)

cy
to

pl
as

m
E

xtracellular
(ground)

Fig. 75.2 Morph of Fig. 75.1 into an equivalent circuit. The lipid membrane becomes a capacitor

(blue). The pore becomes a resistor (red). Some pores will be controllable and will be shown as

rheostats (variable resistors). The outside becomes a connection to ground. The cytoplasm

becomes a simple wire – here represented with a little circle at the end for a connector. The

whole thing represents what is called an RC (resistor-capacitor) circuit in electronics
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held at a negative voltage, current would flow out of ground down to this more

negative potential. In a more complicated case, such as Fig. 75.2, current will divide

unequally. When the current divides like this, it is following parallel paths. In

general, electrical components – wires, resistors, capacitors – are arranged either in

parallel or in series. In Fig. 75.2, the resistor and capacitor are in parallel, i.e., they

are on parallel wires in the circuit. Components in series would be arranged one

after the other.

After Kirchhoff’s law, there are two other laws of importance: one for resistance

and the other for capacitance. Ohm’s law of resistance is the best known: V ¼ IR,
i.e., voltage equals current times resistance. For neurobiological modeling, conduc-

tance g, the inverse of resistance R, is used. Mathematically, conductance is defined

as g ¼ 1
R . Since resistors allow some current to flow, they can be described either in

terms of how much current they let through (conductance) or how much they stop

(resistance). Resistance is expressed in ohms (O) and is represented by R. Conduc-
tance is measured in siemens (S or mho, which is ohm spelled backward) and is

represented by g. Whatever you call it, the same sawtooth resistor symbol is used.

Ohm’s law can be expressed in terms of conductance as V ¼ I/g; hence, I ¼ gV.
Ohm’s law establishes a linear relationship between current and voltage. The larger
the voltage difference between the two sides of the resistor, the more current will

flow. In the circuit diagram of Fig. 75.2, the pores of a single type are all lumped

together as a single big conductor. This is another example of the simplification

characteristic of multiscale modeling: millions of tiny pores are represented here as

one conductor (red in Fig. 75.2). This ubiquitous conductance is known as the leak

conductance, gleak, and is caused by ions leaking into or out of the cell via

transmembrane pores.

Capacitance means the capacity to hold charge. The governing equation for

a capacitor is Q¼ CV, i.e., charge equals capacitance times voltage. The relation of

current to voltage across a capacitor involves movement or change in time since

current I is the flow of charge Q. The law of capacitance states that current flow is

proportional to the rate of change of voltage. A capacitor will pass current easily in

the presence of a quickly changing voltage but will not pass any current in the

presence of constant voltage. In electronics, capacitors are commonly used to store

energy or information. The cell membrane has both these functions.

positive voltage
3 amps 3 amps

1.5 amps

1.5 amps

ground (0 V)

Fig. 75.3 Kirchhoff’s current law. Since charge can be neither created nor destroyed, all current

that goes into a circuit must go somewhere. If 3 amp are added to the left side of the circuit, there
must also be 3 amp in the middle of the circuit (in this example, two parallel wires each carrying

1.5 amp) and 3 amp leaving to ground
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A resistor (R) and capacitor (C) arranged in parallel is called an RC circuit

(Fig. 75.2.) The RC circuit is a fundamental element of study in electronics as well

as in electrophysiology. In electronics, one would test an RC circuit by providing

a signal on the side of the circuit away from ground. Either one injects current and

measures voltage or one provides a known voltage and looks at the flow of current.

In electrophysiology, one can do the same thing. We typically insert a glass electrode

through the membrane to reach the side of the circuit away from ground. We then

inject current into on the inside of the cell and measure the voltage across the

membrane. This is called current clamp (the word clamp here means that one

maintains a constant current). Alternatively, one can measure the amount of current

one must add (“source”) or remove (“sink”) through the electrode in order to maintain

a constant voltage: voltage clamp. In either case, charge added to the inside of the cell
passes out through the protein pores (conversely, charge removed from the cell flows

back in through the pores). Once the current reaches the outside of the cell, it will

disperse to the rest of the body and the surrounding world to ground.

Modeling Transformation #2: From Electrical to Equations

We now have the three laws needed (Kirchhoff’s law, Ohm’s law, rule of capac-

itance) to create a set of algebraic and differential equations. Differential equations

are generally understood using calculus. However, we are heading toward a numer-

ical solution of the differential equations, a solution that directly uses numbers, in

the next transformation. Such numerical solutions are handled on digital computers.

Digital computers cannot directly handle the infinitesimals of calculus because

infinitesimals are not numbers at all but are mathematical representations of the

infinitely small. Although calculus remains the most important tool for understand-

ing differential equations, it is not needed for our current description or for

computer simulation. Just as a cashier uses a computer (the modern cash register)

to sell 15 light bulbs without necessarily remembering how to multiply by 15, so

can the computer user solve sophisticated differential equations without remem-

bering the theory of differential equations.

The capacitance law given above is Q ¼ CV. Current, I, is the change in charge,
Q, with time. The capital Greek letter delta (D) is use to mean change. A change in

time (t) between two times, now and before, is represented as the difference in time

Dt ¼ tnow � tbefore. For a shorthand, we will call the earlier of the two times

(“before”) time a, and the later one (“now”) time b, so Dt ¼ tb � ta. Similarly,

the change in charge during that same period is DQ ¼ Qb � Qa. The difference

between this algebraic treatment and the classical calculus treatment is that the

values used here are numbers representing actual quantities or durations. So if ta is
4:44:32 PM and tb is 4:44:35 PM, then Dt is 3 s. Since current is the amount of

change in charge over time we can represent it as I ¼ DQ
Dt . DQ divided by Dt is the

rate of change of the charge – how quickly the charge is changing or how much it is

flowing. This is directly analogous to the calculation of velocity as the amount of

change in location (Dx) divided by Dt.
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Now one can transform the capacitance equation for charge into a capacitance

equation for current: Q ¼ CV. At time ta, Qa ¼ CVa and at time tb, Qb ¼ CVb. We

subtract the left and right sides of the equations: Qb � Qa ¼ CðVb � VaÞ, so

DQ ¼ CDV. We then divide both sides by the time that has passed: DQ
Dt ¼ C DV

Dt .

Since I ¼ DQ
Dt , the law of capacitance can be expressed in terms of current as I ¼ C DV

Dt .

This is the final equation needed to generate the full set of model equations which

transforms the electronics model of Fig. 75.2 into algebra. As in Fig. 75.3, we will

inject a current Iin at the bottom of the circuit in Fig. 75.2. We will then see what

happens to that current. It will either go through the capacitor or through the resistor

to get to ground. (Remember that although current can pass through a capacitor,

charge cannot – it accumulates on one side of the capacitor, which pushes charges

away from the opposite side, thereby creating a current.) Arithmetically,

Iin ¼ IC þ IR, which are the currents through the capacitor and the resistor,

respectively. IC and IR can be filled in using the corresponding equations:

Iin ¼ C
DV
Dt

þ gV

The above is actually a discrete form of a basic ordinary differential equation

that could be easily solved using calculus. However, we will solve it here using the

computer through numerical integration. The reason for using numerical integration

is not simply to avoid calculus. We need numerical integration because this is only

a tiny piece of the full neuron model. The full system that we are interested in

includes many more components. Once we build up to the whole neuron model, the

analytic techniques of classical calculus would no longer be sufficient: numerical

integration is necessary.

Modeling Transformation #3: From Equation to Simulation

A common question we will want to answer is: what is the voltage at the current

time? To find out, first recall that DV ¼ Vb � Va. Substituting this into the previous

equation leaves us with

Iin ¼ C
Vb � Va

Dt
þ gVa

After a little rearrangement, we get an explicit expression for Vb, the voltage at

the current time:

Vb ¼ 1� gDt
C

� �
Va þ IinDt

C

This is now in the form of an update equation that we could use in a computer

program. We calculate voltage (Vb) based on current voltage Va. At the same time,
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we can update time by simply adding Dt: tb ¼ ta + Dt. These are both calculations

that one can do on a calculator. We would then record the new time and voltage and

would then update Va and ta to the new values in order to start again: the new

voltage becomes the next Va and the new time the next ta, and we are ready for

another update step. Note that although ta and tb do not explicitly appear in the

equations above, we need to keep track of them in order to be able to interpret Va

and Vb – e.g., if we store all of the voltages and times as they are calculated, we can

use them to make a graph of voltage versus time.

In standard neuron simulation, we use units of millivolts (mV) for voltage and

milliseconds (ms) for time. In this example, let us set g ¼ 1 mS
cm2 and C ¼ 1 mF

cm2 for

simplicity. (The common use of square centimeter for these units, contrasted with

the common use of microns for neuron size, is an example of why unit analysis is

important and such a nuisance.) Using these values, g
C ¼ 1=ms. Similarly, for

simplicity, we set the injected current to 1 muA
cm2 . We will use Dt ¼ 0:01ms. With

these convenient choices, the update equation is

Vb ¼ ð1� 0:01ÞVa þ 0:01

At every step, Vb will be updated according to this rule, and tb will be increased
by Dt. So the update for the full simulation requires equations for updating both

t and V:

t ¼ tþ 0:01

V ¼ 0:99 � V þ 0:01

Notice that we have now left out the a, b subscripts for V and t. This is common

practice since this is the form the update rules will take when entered into

a computer program.

We now just need a starting point, called the initial conditions, and we can

simulate. We will start with V ¼ 0 at t ¼ 0. Then at t ¼ 0.01, V ¼ 0.01 and at

t ¼ 0.02, V ¼ 0.020; 0.0099 + 0.01 = 0.0199. Values during the first 100 ms are

t (ms) V (mV)

0.00 0.000

0.01 0.010

0.02 0.020

0.03 0.030

0.04 0.039

0.05 0.049

0.06 0.059

0.07 0.068

0.08 0.077

0.09 0.086

0.10 0.096
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This is known as the charging curve. Notice that the initial rise is very close to

being linear. Figure 75.4 shows 5 ms of simulation and demonstrates the gradual

deviation from linearity. In real life, the resting membrane potential (RMP) of

a neuron would be about�65 mV, so we would start Fig. 75.4 at�65 mV instead of

0. The charging curve will look the same, just starting at �65 mV. The maximum

value (Vmax) for the curve will be determined by resistance; higher resistance will

give a higher final value. We can find this value by solving the update rule as

a regular equation to get the steady state:

Vmax ¼ 0:99Vmax þ 0:01 ð1� 0:99ÞVmax ¼ 0:01 Vmax ¼ 1 mV

We can similarly solve for Vmax in the parameterized equation to show that in

general, Vmax ¼ Iin
g . Notice that Vmax ¼ Iin

g ¼ Iin � R. This is just Ohm’s law. The

value of this maximum reflects the fact that at the end, the voltage is not increasing.

Therefore, DV
Dt ¼ 0 and there is no capacitative current. All the current flows through

the resistor and the voltage is determined entirely by Ohm’s law. Another important

aspect of the charging curve is how quickly the charging takes place. This rate of

climb is measured as Tmemb, the time constant. Using calculus, the time constant can

be shown to be equal to resistance times capacitance: Tmemb ¼ RC ¼ g
C . In

Fig. 75.4, Tmemb ¼ 1 ms. This is the time required for the voltage to reach roughly

63% (i.e. 1/e) of the maximum voltage Vmax.

We cannot directly measure capacitance and membrane conductance in real

neurons. However, both Vmax and Tmemb can be measured by injecting current into

a cell from an electrode. One then measures the voltage difference between the

inside and outside of the cell to estimate gmemb and Cmemb. Inverting the above

1

0.5

0

V (mV)

t (ms)

Vmax

τ

τ

1 2 3 4 5
0

Fig. 75.4 Simulation of the

RC circuit shown in Fig. 75.2,

representing a membrane

charging curve. Simulation

parameters were C ¼
1 mF/cm2, g ¼ 1 mS/cm2,

Iin ¼ 1 mA/cm2. These give

a time constant of Tmemb ¼
[C/g] ¼ 1 ms and a maximum

voltage of Vmax ¼
[(Iin)/g] ¼ 1 mV. The two

trajectories show different

initial conditions: V0 ¼ 0

(red) or V0 ¼ 0.5 (blue)
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equations, we see that gmemb ¼ Iin
Vmax

(Ohm’s law) and Cmemb ¼ Iin=ðVmax � TmembÞ.
Hence, although gmemb and Cmemb are the basic parameters used in the simulations,

these are only estimates based on measured cell properties.

Figure 75.4 represents the simulation of a simple dynamical system. The word

dynamics and the term dynamical system, originally applied to systems in motion

such as the planets, have been generalized to refer to any system in which quantities

change with time. In this case, voltage, V, changes with time. In studying dynamical

systems, we distinguish between state variables and parameters. State variables

change with time. Here, voltage is the only state variable. Parameters define the

system: the parameters here are g, C, and Iin. The other key attributes for

a dynamical system are initial conditions. In this case, if we set voltage to

a different starting point, we will get a different result. Two trajectories are

shown in Fig. 75.4. The red curve shows a trajectory with an initial condition of

V ¼ 0, while the blue curve shows trajectory with initial condition of V ¼ 0.5.

Notice that the key dynamical characteristics, Vmax and T, remain the same regard-

less of initial conditions.

Modeling Transformation #4: From Simulation to Information
Processing

We are interested in how the physical properties of a neuron provide its informa-

tion processing capabilities. In Fig. 75.4, a continuously injected current provides

an input signal. It is customary to consider this situation in the context of

signals and systems, a subfield of engineering. The system, in this case, the

membrane model, transforms the signal by filtering it. In this case, the response

of the membrane depends on the two fundamental properties of capacitance and

resistance. There are many biological actions that can alter membrane resistance.

Stepping back a couple of transformations to the underlying conceptual model,

we will recall that membrane resistance is dependent on the pore shown in

Fig. 75.1. These pores can be open or closed by a variety of influences:

neuromodulators, synaptic inputs, voltage changes, phosphorylation from kinases,

ongoing activity, second messengers, etc. By contrast, there is no known

mechanism that would change membrane capacitance on the time scale relevant

to neural signaling.

Having set the parameters of our system and seen the response to a single signal,

we can now look at the response to multiple signals. The fundamental property that

the membrane shows is literally the capacity for signal summation: the capacitance

of the membrane prolongs the effects of a first signal and then allows the second

signal to add (Fig. 75.5). Due to the gradual fall-off, this signal summation will be

greatest at earliest times. In this way, signal summation provides coincidence

detection. When two signals arrive at the same time – i.e., when they coincide –

the resulting signal will be largest. As the timing of the two signals becomes more

separate, the peak of the signal is reduced. Note that the peak of the second signal in
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Fig. 75.5 is directly related to the voltage amplitude at the time when the signal

begins. This is linear summation. In general, real biological signals are somewhat

more complicated so that summation is nonlinear: the total signal may be either

greater or less than the total amplitude predicted by summing the two signals

individually.

Transformation #5: From One Membrane Patch to Many:
Compartmental Modeling

The patch of membrane we modeled can now be put together with other patches of

membrane to make complicated dendritic trees comparable in appearance to neu-

rons. These dendritic trees are modeled using compartment modeling. Each com-

partment is an RC circuit similar to Fig. 75.2. These individual compartments are

then connected on the cytoplasmic side (inside) by resistors. As before, the outside

is all connected to ground. Different inputs (synapses) can be located in different

compartments, placing them at different locations in the dendritic tree. In general,

the further an input is from the soma, the major integrative location of the cell, the

less influence it will have on the output of the cell since the action potential is

generated near the soma.

In order to build a model of a real neuron, we would fill a neuron with dye to

make the dendritic tree easily visible under the microscope. We would then

measure lengths and diameters of dendrites and map out the branching pattern.

A cartoon picture of a typical neuron is shown in Fig. 75.6a. Using these measure-

ments, we can assign cylindrical compartments. The soma or cell body is in reality

a roughly spherical or pyramidal structure. However, it is just going to end up as

a bunch of conductances and a capacitance in the circuit model. Therefore, we can

represent it as a cylinder or a sphere or anything else as long as we preserve its

surface area. (More surface area will translate into more capacitance and more

conductance.)

Fig. 75.5 A second signal is

delivered to the membrane at

various times (1, 5, 13, and

25 ms) following an initial

signal. Each signals is of the

same amplitude. The more

quickly the second signal

arrives following the first, the

larger the resultant voltage
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In the context of numerical integration, the spatial division of dendrites into

small cylinders of length Dx is analogous to the temporal division of duration into

subdivisions of Dt. The quality of any numerical integration depends on making

the time steps Dt short enough so that the change in state variables (here the

different voltages in the different compartments) during a single time step is

insignificant. If the time steps are too long, then the approximation will be inaccu-

rate. We can test for adequate approximation by trying progressively smaller time

steps. At the point where the approximation is accurate, reducing the time step

further will not alter the trajectory substantially. Similarly, the quality of

a compartment model depends on making the spatial steps (cylinder lengths, Dx)
small enough that the change in voltage over the length of the cylinder is insignif-

icant. This can be tested by choosing smaller cylinders. Note that one wants to use

the largest space and time steps that still give accurate results since smaller steps

will increase simulation time.

The major difference between the compartmental model and the resistor-

capacitor model of Fig. 75.2 is the longitudinal resistance represented by the

resistors between the individual patches of membrane representation. This longi-

tudinal cytoplasmic resistance restricts flow of current along the dendrite. The

narrower the dendrite, the higher its resistance will be. Wide cylinders allow

more ions to pass, giving less resistance, less signal drop-off, and faster signal

transmission. Because thin cylinders have high resistance, they produce a large

voltage drop and must be represented by more compartments than are used with

broad cylinders. As before, the voltage drop-off can be calculated using Ohm’s law.

Fig. 75.6 Three

representations of

a compartmental model:

(a) schematic anatomy,

(b) cylindrical
compartmentalization, and

(c) equivalent circuit model.

Each of the individual RC

circuits represents a single

patch of membrane which is

connected to the next patch by

a resistor representing the

longitudinal resistance
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The algebra for this circuit is similar to what we did in the prior section. But now we

have a lot more equations, and we really must use a computer in order to do the

calculations.

Transformation #6: From Passive to Active

The compartmental model of the prior section is called a passive membrane model.

It reacts passively to signals by charging and discharging as shown in Fig. 75.5. It is

passive in the sense that the system itself does not add anything to the signal but

simply filters it – converting a current or conductance signal into a voltage and

prolonging it due to the time constant. Greater complexities arise as we go to an

active model. Active means that some of the ion channels, represented by the pores

in Fig. 75.1 and by the resistors in Fig. 75.2, are now not static but change their

resistance due to some influence. This influence is usually either chemical or

electrical. However, the influence can also be mechanical, as it is for the pressure

sensors used in the skin and in hearing.

Neurons were long known to generate an action potential or spike in the axon.

This is an active process: a relatively small signal that produces a much larger spike

based on activity in the membrane. In the 1950s, Alan Hodgkin and Andrew Huxley

worked out the ionic basis of the action potential and developed a mathematical

model for this process. Their work can be regarded in retrospect as the beginning of

computational neuroscience. It remains the cornerstone for much neural modeling

today. The focus of the original research was on two types of ion channels (the pore

in Fig. 75.1) from a squid axon. Since that time, it has become apparent that there

are many different kinds of ion channels that differ in their responsiveness (to

chemicals, voltage, pressure) in the ion or ions that they carry (Na+, K+, Ca++, Cl�)
and in the time course and amplitude of response. Although more precise computer

models have been developed to describe the operation of these pores, the Hodgkin-

Huxley model is still most commonly used in neuron modeling because the more

complex models are too computationally intensive. In the context of multiscale

modeling, the Hodgkin-Huxley model represents a simplification of these more

complex models. However, this simplification preceded the development of the

sophisticated models rather than being a product of them.

The Hodgkin-Huxley version of the parallel conductance model uses the same

passive components (the R and the C) and adds the active components, the rheostats

(Fig. 75.7). We note here a change in the way the passive components are laid out as

well. The constant resistor, labeled here g, now is in series with a battery, symbol-

ized by the two parallel lines of unequal length (two lines of equal length symbolize

a capacitor). Each of the variable resistors (a resistor symbol with line through it is

a variable resistor or rheostat) also has a battery associated with it. All of these

batteries are set to different voltages, according to the electrical potential (electrical

potential or just potential is synonymous with voltage) produced by energy-

dependent pumps that move ions across the membrane. For example, Na+ is

pumped out of the membrane causing it to have a higher concentration outside
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than inside. This creates a concentration gradient trying to cause Na+ to flow back

into the cell and an opposing electrical gradient which is therefore positive inside

and negative outside.

The equation that describes the relationship of battery strength to concentration

difference is called the Nernst equation. The sodium battery in Fig. 75.7 is therefore

shown with the positive pole pointing inward toward the cytoplasm. Notice that the

different ions created different batteries denoted as sodium battery, potassium

battery, etc. These batteries function independently and do not interfere with one

another. The simple rule for interpreting this circuit is that the more the rheostat is

open (conducting, allowing current flow), the more the battery that sits in series

with it will affect that overall voltage difference between outside and inside. To see

why, imagine the rheostat was completely closed. The battery would then be sitting

at a “dead end” and thus would not have any impact at all on the rest of the circuit.

At rest, only the leak conductor is open, so the leak battery fully determines the

potential, called the resting membrane potential. This is a negative voltage that

typically sets the resting membrane potential at about �65 to �70 mV relative to

ground. As other rheostats open, their associated batteries begin to influence the

membrane potential. This is the source of the various signals that are measured

(Fig. 75.8). Signals that are positive (upgoing) are generally excitatory while

signals that are downgoing are generally inhibitory. Positive signals are called

depolarizing, and negative are called hyperpolarizing. Hyperpolarization and depo-

larization are not symmetrical. The strongest negative batteries can only pull the

potential down by about �20 mV, but the strongest positive batteries can pull up to

about 100 mV above rest. Artificially, one can move the membrane beyond these

bounds by injecting or withdrawing current.

extracellular

cytoplasm

battery

+

+ +

+

rheostat
(variable

conductor)

Eleak EK ENa

gK gNagleak

le
ak

po
ta

ss
iu

m

so
di

um

Fig. 75.7 Parallel-

conductance model of the

membrane. Like Fig. 75.2

circuit but now with more

resistors, including variable

resistors (rheostats) as well as

fixed ones. All of the resistors

are now in series with

batteries (green)
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The key to the model mechanism lies in the rheostats. These will increase or

decrease their conductance in response to voltage change, leading to positive or

negative feedback loops. In the resting condition of the model, the sodium and

potassium rheostats are turned off. Since these two lines are not conducting, the

associated Na+ and K+ batteries have no effect on membrane voltage. The calcu-

lations for the parallel-conductance model are similar to those for the RC model

except that we have to consider the batteries. As in the RC model, Ohm’s law gives

a resistive current equal to conductance times membrane voltage. As before, this

can be written as IR ¼ gVmemb. The amount of current flowing through a given

rheostat will depend on (1) the conductance of that rheostat and (2) the difference

between the potential of its associated battery and current membrane potential. For

the leak conductance, Ileak ¼ gleakðVmemb � EleakÞ, where Eleak is the potential of the

leak current battery, usually about�75 mV. Similarly, INa ¼ gNaðVmemb � ENaÞ and
IK ¼ gKðVmemb � EKÞ.

All of the currents add up to zero: 0 ¼ IC þ INa þ IK þ Ileak. (We are omitting

injected current here.) Ic is the current due to the membrane capacitor, and each of

the others is a current through pores. Therefore, � IC ¼ INa þ IK þ Ileak. Substitut-
ing for the currents gives the parallel-conductance equation:

� C
Dv
Dt

¼ gleakðVmemb � EleakÞ

þ gNaðVmemb � ENaÞ

þ gKðVmemb � EKÞ

D
ep

ol
ar

iz
at

io
n

Hyperpolarization
RMP

0 mV

EPSP

IPSP

AP

Fig. 75.8 Resting membrane potential (RMP) is typically about �65 mV (inside negative). The

membrane can be depolarized as much as 120 mV or hyperpolarized as much as �30 mV from

rest. Excitatory postsynaptic potentials (EPSPs, red) depolarize; inhibitory postsynaptic potentials
(IPSPs, blue) hyperpolarize. Action potentials (APs, green) are large, brief (1–2 ms long) depo-

larizations that can overshoot 0 mV, temporarily reversing membrane polarity
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At steady state, there will be no capacitative current since voltage is not

changing:

0 ¼ INa þ IK þ Ileak ¼ gleakðVmemb � EleakÞ þ gNaðVmemb � ENaÞ
þ gKðVmemb � EKÞ:

Solving this equation for Vmemb gives the RMP:

RMP ¼ gleak Eleak þ gNa ENa þ gK EK

gleak þ gNa þ gK

This is a version of the Goldman-Hodgkin-Katz (GHK) equation that states that

steady-state membrane voltage will be the weighted sum of the batteries, with the

weighting provided by the conductance associated with that battery. Since gleak is
the dominant conductance at rest, it will have the greatest effect on determining the

RMP. If a conductance is turned off completely (e.g. gNa ¼ 0), the corresponding

battery has no influence. If, on the other hand, a conductance is very high, then the

corresponding battery will dominate, e.g. if gNa � gK and gNa � gleak, then

Vmemb � gNa�ENa

gNa
; hence, Vmemb � ENa. This is what happens at the peak of the action

potential: the sodium conductance is high so that the membrane potential starts to

approach the sodium reversal potential.

As before, we can look at the Hodgkin-Huxley model from the perspective of

active biological proteins, as an electronics circuit, as a set of equations, or as

a simulation. But we can also describe the interaction of the channels in terms of

positive and negative feedback systems. We will use this explanation here since it

is the most straightforward and does not rely on knowledge of electronics or

differential equations. Feedback refers to the detecting of a change that has

been brought about by the actions of a system. First, the system acts on the

environment. Second, the system detects a change in the environment. This

change is the feedback that the system is receiving based on its actions just as

verbal feedback from your instructor will accompany your learning to play

tennis. Negative feedback is a property in a system that resists changes. When

a change is detected in the environment, the system reduces or reverses its

influence on the environment. The classic example is a thermostat: when it gets

hotter, the thermostat stops heating or starts cooling; when it gets colder, it

does the opposite. Negative feedback is seen in homeostatic systems. The term

“stasis” in homeostasis and “stat” in thermostat both imply a static environment –

keeping things at or near a set point. By contrast, positive feedback keeps moving

the environment away from a set point. Purely positive feedback systems tend

to be bad: think nuclear meltdown. Positive feedback systems are not self-

limiting; they are limited by something outside of the system (i.e. dispersal due

to an explosion). It can be very useful for a system to mix positive and negative

feedback since this way, it can be very sensitive to small changes in the
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environment (positive feedback) while still being able to handle large ones

(negative feedback).

The Hodgkin-Huxley sodium and potassium channels are voltage-sensitive

conductances. They go on and off with voltage change. If positive voltage change

creates a current that leads to more positive voltage change, this would be positive

feedback. This is a property of the Na+ channel. If positive voltage change creates

a current that reduces or reverses positive voltage change, this would be negative

feedback. This is a property of the K+ channel. The ion channels are conceptualized

as working through switches. Thinking back to the thermostat, we see that it is

a system that controls temperature by switching on and off heating and cooling

systems. Similarly, the ion channels control voltage by switching currents on and

off. For the individual ion channel, the switch is either on or off. However, the

rheostat in Fig. 75.7 represents a large population of individual ion channels. When

all of those channels are open, the switch is completely on, represented mathemat-

ically by the number 1 in the Hodgkin-Huxley equations. When all of the channels

are closed, the switch is completely off, represented by 0. Most of the time, some

are on and some are off so the system is partway on, represented by some decimal

value between 0 and 1.

The Hodgkin-Huxley model is still more complicated since one of the active

channels, the Na+ channel, is controlled by two switches rather than by one. In

addition to a regular on/off switch (the “m” switch), it also has separate dedicated

inactivation switch (the “h” switch) that can be viewed as an override system that

kicks in when positive feedback goes too far. This leads to a surprising amount of

additional complexity since one has to think not only how the “m” switch gets

turned on and then off but also how the “h” switch gets turned to off (the override)

and then back to the on position. The K+ channel has only the single on/off switch:

the “n” switch.

Turning on the “m” switch activates the Na+ channel and pushes voltage (V) up

to less negative (depolarized) values. Turning on the “n” switch activates the K+

channel and pushes down (hyperpolarizes). The switches are controlled by voltage.

The system produces an action potential (also called a “spike” because of its

appearance) because the positive and negative feedback loops are activated in

a sequence. The sequencing is produced by the fact that the switches are associated

with different time constants and voltage sensitivities: out of Tm; Th, and Tn; Tm is

the smallest, so “m” switches on first in response to depolarization. This causes Na+

channels to open (i.e. the rheostat begins to conduct), which in turn produces

a sharp upswing in V as the circuit seeks to come up to the voltage defined by the

Na+ battery, usually about +45 mV. This depolarization leads to further opening of

the channels – the positive feedback response – until the membrane potential

reaches +30 to +40 mV. The depolarization now causes the slower “h” and “n”

switches to kick in. The “h” switch starts to turn off the Na+ channels, even as “m”

is still turning them on – but since Na+ is only on if both “h” and “m” are on, the net

effect is to turn Na+ off. The “n” switch starts to turn on K+ channels, pulling the

membrane down toward the value of the K+ battery, usually around �90 mV. The

result of all of this “on”ing and “off”ing is shown in Fig. 75.9.
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The positive feedback during the upswing of the action potential allows the V to

rise about 100 mV over about one millisecond in a mammal. The rates of all the

switches, like all proteins, are temperature dependent. Compared to normal func-

tioning at body temperature, the action potential will be slower and broader in

a neuron placed in a dish at room temperature and slower still in a squid neuron kept

at the deep-sea temperature of about 6� C.
Figure 75.9 is just the tip of a dynamical iceberg. In Fig. 75.4, we had only one

state variable, V. In Fig. 75.9, we are still only showing one state variable which

obscures the fact that there are four: m, h, n, and V. We could show the other state

variables on three additional graphs. However, it is often more revealing to graph

one state variable against another on a phase plane where the trajectories deter-

mined by the dynamics will be revealed as loops. But even this representation only

reveals two dimensions of this four-dimensional system. In general, as we go to

higher dimensions, the difficulty of adequate visualization increases.

In large network models, we can have millions of state variables. These state

variables interact in complex ways, making the analysis of these systems complex,

though not nearly as complex as the analysis of the experimental systems upon

which they are based. These are systems of interlocking, linked differential equa-

tions. Positive and negative feedback systems coexist with different strengths and

different delays in large and small loops. In these entangled systems, it is typically

not possible to assign clear causality as these cycles and cycles-within-cycles

provide many paths of influence. Chasing these state variable interactions around

multiple feedback cycles produces proverbial chicken-and-egg predicaments.

When putting together a compartmental model of a particular neuron, neuro-

physiological data would likely suggest the inclusion of additional voltage-

sensitive conductances (rheostats) in some compartments. We will also need to

include other rheostats to represent synapses. Figure 75.10 shows three compart-

ments from a neuron model: one passive, one active, and one synaptic. The active

compartment is labeled here as using a Ca++ battery, so this would be set with

po
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negative

feedback

Na inactived

Na on

K on

Fig. 75.9 Positive feedback

(upswing) followed by

negative feedback

(downswing) shapes the
action potential. The time

constant of Na+ inactivation

by the “h” switch is

approximately the same as

that of K+ activation, so the

downswing is due to both

increased K+ conductance and

reduced Na+ conductance
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different parameters than are used with the Na+ battery from the Hodgkin-Huxley

equation. The synaptic compartment is shown with a depolarizing battery. There-

fore, this would be an excitatory synapse. Biologically, the associated rheostat

would be triggered by a chemical. However, we are not modeling chemicals, so

in our context, the trigger would just be a signal. In a network model, this signal

might be received from another neuron when that neuron spikes.

Putting It All Together

Now we have all the tools to model a neuron. If we start with a passive neuron

model and provide synaptic inputs, we can demonstrate that inputs far from the

soma will have less effect on the soma than will those nearby. In Fig. 75.11, we

stimulate the neuron by initiating excitatory postsynaptic potentials (EPSPs)

at different locations to see how signal spreads. Looking at the soma trace

(second from bottom), we see that EPSPs triggered at different locations have

different effects at the soma. The effect at the soma is important since this is near

the primary integrating area where the output spike will be generated (the axon

initial segment). The first EPSP is at the bottom, as indicated by the arrow on the

corresponding trace. This EPSP is still seen at the soma but appears smaller and

somewhat delayed. Similarly, the second EPSP, generated at the soma, is seen

smaller and delayed at other locations in the cell. The degree of spread is deter-

mined by the passive membrane parameters. Increased capacitance will favor the

spread of longer signals compared to short ones. Membrane leakiness (membrane

conductance) will reduce spread since signals leaks out into the extracellular space.

Longitudinal (cytoplasmic) resistance will also reduce spread.

Notice that the EPSPs initiated at the ends are larger than those triggered at other

locations despite the fact that the same synaptic conductance was used at each

location. The difference in response is due to the fact that current has only one

direction to travel in at an end. It therefore tends to “pile up” instead of leaking

away in two directions down the dendrite. In electrical terms, these terminal

locations have relatively high input impedance. Impedance refers to any obstacle

to current flow. In a dendrite, resistance provides a constant impedance, while

capacitance provides a frequency-dependent impedance. A capacitor has an imped-

ance inversely proportional to frequency: high for low-frequency signals and low

Passive Active

EK ECa Esyn

Synaptic

Fig. 75.10 Three example compartments from a dendrite model. On the circuit diagram, different

rheostat branches are distinguished only by the directions of their batteries
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for high frequency. This produces the opposite effect on signal passage down the

dendrite since high-frequency signals are shunted across the membrane to ground,

while low-frequency signals are allowed to pass through only slightly attenuated

(Fig. 75.12). Sinusoidal signals like those shown here are sometimes applied to cells

in order to test their responsiveness. Biological signals, EPSPs, approximate a half

cycle (one up and one down) of such a signal. The same effect would be seen with

these signals: a long-duration EPSP will travel farther than a short-duration EPSP.

In addition to increasing the size of an EPSP at a distal dendrite, high terminal

input impedance also reduces the drop-off of the EPSP going away from the soma,

compared to the drop-off of an EPSP going toward the soma. These two effects, the

increased size of a distal EPSP and the increased drop-off toward the soma, tend to

cancel out. Therefore, a distal input arriving at the soma is about the same size as

a somatic input arriving at a distal dendrite. High distal input impedance produces

a large distal EPSP (top trace, fourth EPSP). This large EPSP is substantially

decremented when seen at the soma (third trace, fourth EPSP). Going in the

other direction, the somatic EPSP is relatively small due to lower input impedance

(third trace, second EPSP), but signal fall-off from the soma to the distal dendrite is

Fig. 75.11 Signal spread in

a multicompartment neuron

model. Each of the colored

dots represents a location of

both stimulation and

recording. One stimulus was

applied to each location,

moving from bottom to top.
The color of each voltage

trace corresponds to the

identically colored location

on the neuron. Arrows on the

voltage trace indicate which

stimulus was applied at that

recording location; the other

three are the result of

propagation. In general, the

further a signal travels from

the site of stimulation, the

smaller its amplitude will be
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relatively small (top trace, second EPSP). In this way, differences in input imped-

ance are partially balanced by the asymmetry in the transfer of signals in these

passive models.

If we now make the soma into an active compartment with Hodgkin-Huxley

channels, we can trigger the distal dendrite and see a spike in the soma. In

Fig. 75.13, an EPSP is triggered in the distal dendrite that then travels down the

dendritic tree. Only the soma compartment is active; all dendrite compartments are

passive. Note that the progress of the signal down the dendritic tree (downward

arrow) is not entirely smooth and is not quite the same as the backward propagation

of the action potential back up (upward arrow). Delays in signal propagation tend to

occur where there is branching.

Biologically, dendrites are not passive but instead include many voltage-

sensitive channels. Unfortunately, it is not clear exactly which channels are present

in particular cell dendrites and whether these channels will tend to have an overall

augmenting effect (as would be the case with Na+ and Ca++channels) or an overall

attenuating effect (with K+ channels) on signal passage. Furthermore, these den-

dritic voltage-sensitive channels can be modulated by phosphorylations and by the

presence of other chemical signals, allowing them to potentially play different roles

under different circumstances. In Fig. 75.14, we give an example where the

dendrites are signal-augmenting through a combination of Na+ and K+ channels.

We provided the same stimulus as in Fig. 75.13. The dendrites in this case have the

same Hodgkin-Huxley channels that are present in the soma but with the Na+

channel at about one eighth density. The most distal compartments, where the

signal is given, are left passive. The voltage profile is now more complicated,

Signal Input
Signal out
(Attenuated)

Dendrite

Fig. 75.12 Signal frequency

determines signal passage

(left to right) down a dendrite.
High-frequency signals (top)
are more attenuated: lower

amplitude for the high-

frequency signal on right
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Fig. 75.13 Strong distal

activation (red dot on neuron)

generates a signal that

propagates passively down to

the soma (black downward
arrows) where an action

potential is generated, which

then propagates passively

back up the dendritic tree

(gray upward arrows). Each
voltage trace (left) was
recorded at the corresponding

vertical position in the

dendritic tree. Notice that

neither of the signals

propagate at a constant

velocity – i.e. the black and
gray lines are not completely

straight

Fig. 75.14 Activation as in Fig. 75.13, except with active dendrites, showing much more

complicated wave propagation. Along with an initial activation traveling down to the soma

(approximately traced by black downward arrow), an active depolarization begins partway

down the dendritic tree and propagates in both directions – to the soma (dark gray downward
arrow) and back up through the dendritic tree (light gray upward arrow)
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with evidence of some partial backpropagation of signal from a point partway down

the dendrite. This complexity with just a single input signal begins to suggest the

complexities of signal integration that could occur with the multiple inputs that real

pyramidal cells are being continuously exposed to.

There are other approaches to describing the Hodgkin-Huxley model, in addition

to five or six used in this chapter. For example, one can use complex graphical

representations that allow us to look at several dimensions of the dynamics at once,

phase-plane representations. One can then apply mathematical techniques to help

us understand the trajectories on the phase planes: descriptions of nullclines and of

the space of solutions as a field.

Outlook

We have covered some of the basic techniques that allow us to generate computer

models of single neurons. These many techniques – biophysics, electronics, calcu-

lus, algebra, numerics, and systems engineering – provide a somewhat rounded

view of single neuron dynamics. Looking at the same phenomenon from so many

different perspectives provides an understanding that cannot be gained by looking

at only one. Similarly, experimenting with the simulation by testing parameter

variations and observing the effects, as we did in comparing Figs. 75.13 and 75.14,

gives further insight. One begins to develop an intuition as to what the biological

systems are capable of and how they sometimes react in unexpected ways. The

payoff for all of this hard work can be appreciated by considering the well-known

parable of the blind men who meet an elephant – one feels the trunk, one a leg,

another a tusk, etc. – and they give widely discrepant descriptions of the beast.

None of them knows anything useful about elephants, but if they pool their

knowledge, they may be able to create a passable picture. Similarly, coming at

a model from many angles permits us to come closer and closer to understanding

the thing itself. We have neither the concepts nor the mental capacity to wrap our

brains around all of this complexity and see nature as it really is. Instead, we use

these different models as tools to pick up different clues to this underlying reality.

As we move back and forth between representations, we gain deeper insights.

Glossary

Compartmental Model A model with connected isopotential compartments

representing a dendritic tree or other neural structure

Dynamical System A system of interrelated values that change in time

Parallel Conductance Model Model of neural membrane featuring rheostats,

resistors, and a capacitor in parallel

State Variable The variables that change with time in a dynamical system
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