Lab Publications

Found 267 results
[ Author(Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
L
Lytton, WW., Hellman KM., & Sutula TP. (1996).  Computer network model of mossy fiber sprouting in dentate gyrus. Epilepsia – AES Proceedings. 37 S. 5, 117.
Lytton, WW., & Stewart M. (2005).  A rule-based firing model for neural networks. Int. J. for Bioelectromagnetism. 7, 47-50.
Lytton, WW., Omurtag A., Neymotin S., & Hines ML. (2008).  Just-in-time connectivity for large spiking networks. ncomp. 20, 2745-2756.
Lytton, WW., & Sejnowski TJ. (1992).  Computer model of ethosuximide's effect on a thalamic neuron. 32, 131-139.
Lytton, WW., Knox A., & Rosenthal J. J. C. (2017).  Site-directed mRNA editing of sodium channels has potential to alter neuronal firing and network dynamics: Computer models. Society for Neuroscience 2017 (SFN '17).
Lytton, WW., & Thomas E. (1999).  Modeling thalamocortical oscillations. (Ulinski, P., Jones EG., & Peters A., Ed.).Cerebral Cortex. 13, 479-509.
Lytton, WW., Kerr CC., Chadderdon GL., Neymotin SA., & Francis JT. (2012).  Reinforcement learning of 2-joint virtual arm reaching in detailed cortex simulation. Neural Control of Movement.
Lytton, WW., Stark JM., Yamasaki DS., & Sober SJ. (1999).  Computer models of stroke recovery: Implications for neurorehabilitation. The Neuroscientist. 5, 100-111.
Lytton, WW., Neymotin S., Lee HY., Uhlrich DJ., & Fenton AA. (2008).  Circuit changes augment disinhibited shock responses in computer models of neocortex. American Epilepsy Society Annual Meeting. 3, 284.
Lytton, WW., & Hines M. (2005).  Independent variable timestep integration of individual neurons for network simulations. 17, 903-921.
Lytton, WW., & Stewart M. (2006).  Rule-based firing for network simulations. Neurocomputing. 69, 1160-1164.
Lytton, WW., Orman R., & Stewart M. (2008).  Broadening of activity with flow across neural structures. Perception. 37, 401-407.
Lytton, WW., & Wathey J. C. (1992).  Realistic single-neuron modeling. Seminars in Neuroscience. 4, 15-25.
Lytton, WW. (1991).  Simulations of a phase comparing neuron of the electric fish Eigenmannia. 169, 117-125.
Lytton, WW. (1997).  Brain organization: from molecules to parallel processing. (Trimble, MR., & Cummings JL., Ed.).Contemporary Behavioral Neurology. 5-28.
Lin, Z., Tropper C., Yao Y., McDougal R. A., Patoary MN., Lytton WW., et al. (2017).  Load balancing for multi-threaded PDES of stochastic reaction-diffusion in neurons. J Simulation. 11, 267.
Lin, Z., Tropper C., Patoary M. Nazrul Ish, McDougal R. A., Lytton WW., & Hines M. L. (2015).  Ntw-mt: A multi-threaded simulator for reaction diffusion simulations in neuron. Proceedings of the 3rd ACM SIGSIM Conference on Principles of Advanced Discrete Simulation. 157–167.
Lin, Z., Tropper C., McDougal R. A., Patoary M. Nazrul Ish, Lytton WW., Yao Y., et al. (2017).  Multithreaded Stochastic PDES for Reactions and Diffusions in Neurons. ACM Transactions on Modeling and Computer Simulation (TOMACS). 27, 7.
Li, K., Dura-Bernal S., Francis J., Lytton WW., & Principe J. (2015).  Repairing Lesions via Kernel Adaptive Inverse Control in a Biomimetic Model of Sensorimotor Cortex. Neural Engineering (NER), 2015 7th International IEEE/EMBS Conference. 1-4.
Lee, GJ., Matsunaga A., Dura-Bernal S., Zhang W., Lytton WW., Francis JT., et al. (2014).  Towards real-time communication between in vivo neurophysiological data sources and simulator-based brain biomimetic models. Journal of Computational Surgery. 3, 12.
Lazarewicz, M. T., Contreras D., Finkel L. H., & Lytton WW. (2009).  Computer model of a theta-gamma dissociation in hippocampus. Society for Neuroscience 2009 (SFN '09).
Lakatos, P., Barczak A., Neymotin S., McGinnis T., Ross D., Javitt DC., et al. (2016).  Global dynamics of selective attention and its lapses in primary auditory cortex. Nat Neurosci. In press.
Lakatos, P., Barczak A., Neymotin S. A., Lytton WW., Mcginnis T., Javitt D. C., et al. (2014).  Thalamocortical dynamics of rhythmic selective and tonic suppressive modes in the auditory system. Society for Neuroscience 2014 (SFN '14).
Lakatos, P., Barczak A., Neymotin S., Lytton WW., McGinnis T., Javitt D., et al. (2014).  Thalamocortical dynamics of rhythmic selective and tonic suppressive modes in the auditory system. Society for Neuroscience Abstracts. 44,
K
Kubie, J. L., Fenton A. A., Lytton WW., & Burgess N. (2009).  Grid-cell models for navigation and context discrimination. Society for Neuroscience 2009 (SFN '09).
Knox, A. T., Glauser T., Tenney J., Lytton WW., & Holland K. (2018).  Modeling pathogenesis and treatment response in childhood absence epilepsy. Epilepsia. 59, 135–145.
Kerr, C. C., O'Shea D. J., Goo W., Dura-Bernal S., Diester I., Kalanithi P., et al. (2014).  Information flow in optogenetically stimulated macaque motor cortex: simulation and experiment. Neural Control of Movement (NCM) meeting.
Kerr, C., Dura-Bernal S., Menzies R. J., Mclauchlan C., Van Albada S. J., Kedziora D. J., et al. (2016).  Computational capacity as a function of network size. Society for Neuroscience 2016 (SFN '16).
Kerr, CC., Neymotin S., Chadderdon GL., Fietkiewicz CT., Francis JT., & Lytton WW. (2012).  Electrostimulation as a prosthesis for repair of information flow in a computer model of neocortex. IEEE Trans Neural Syst Rehab Eng. 20, 153–60.
Kerr, C., Van Albada S. J., Neymotin S. A., Chadderdon G. L., Robinson P. A., & Lytton WW. (2012).  Effects of basal ganglia on cortical computation: A hybrid network/neural field model. Society for Neuroscience 2012 (SFN '12).
Kerr, CC., Neymotin SA., Song W., Francis JT., & Lytton WW. (2011).  Modulation of stimulus fields in a computer model of the thalamocortical system. Society for Neuroscience.
Kerr, C. C., Dura-Bernal S., Smolinski T. G., Chadderdon G. L., & Wilson D. P. (2018).  Optimization by Adaptive Stochastic Descent. PLOS ONE. 13, 1-16.
Kerr, C., Von Kraus L., Iordanou J., Neymotin S. A., Francis J., & Lytton WW. (2013).  Receptive field formation and erasure in somatosensory cortex. Society for Neuroscience 2013 (SFN '13).
Kerr, C., Choi J. S., Dura-Bernal S., Francis J. T., & Lytton WW. (2014).  One size does not fit all: Calibrating microstimulation to individual subjects using spiking network models. Society for Neuroscience 2014 (SFN '14).
Kerr, CC., van Albada SJ., Chadderdon GL., Neymotin SA., Robinson PA., & Lytton WW. (2012).  Effects of basal ganglia on cortical computation: a hybrid network/neural field model. Society for Neuroscience.
Kerr, CC., O'Shea DJ., Goo W., Dura-Bernal S., Francis JT., Diester I., et al. (2014).  Network-level effects of optogenetic stimulation in a computer model of macaque primary motor cortex. BMC Neuroscience. 15, P107.
Kerr, C. C., O'Shea D. J., Goo W., Dura-Bernal S., Francis J. T., Diester I., et al. (2014).  Network-level effects of optogenetic stimulation in a computer model of macaque primary motor cortex. Computational Neuroscience Meeting (CNS 14').
Kerr, CC., van Albada SJ., Neymotin S., Chadderdon GL., Robinson PA., & Lytton WW. (2013).  Cortical information flow in Parkinson's disease: a composite network/field model. Front Comput Neurosci. 7, 39.
Kerr, CC., Fietkiewicz CT., Chadderdon GL., Neymotin SA., & Lytton WW. (2010).  Development of In Silico Brain for DARPA REPAIR project. DARPA Neural Engineering, Science, and Technology Meeting.
Kerr, CC., Mo J., Neymotin SA., M D., & Lytton WW. (2011).  Interlaminar Granger causality and alpha oscillations in a model of macaque cortex. Computational Neuroscience.
Kerr, C. C., Van Albada S. J., Neymotin S. A., Chadderdon, Iii G. L., Robinson P. A., & Lytton W. W. (2013).  Multiscale modeling of cortical information flow in Parkinson's disease. Computational Neuroscience Meeting (CNS '13).
Kerr, CC., Neymotin SA., Mo J., Schroeder CE., M D., & Lytton WW. (2011).  Interlaminar feedback connections dominate in macaque inferotemporal cortex: in vivo and in silico studies. Society for Neuroscience.
Kelley, C.., Dura-Bernal S.., Neymotin S.., & Lytton W.. W. (2019).  Dendritic resonance in a detailed model of pyramidal tract neuron of mouse primary motor cortex. Society for Neuroscience 2019 (SFN '19).
Kapur, A., Lytton WW., Ketchum K., & Haberly L. (1997).  Regulation of the NMDA component of EPSPs by different components of postsynaptic GABAergic inhibition: A computer simulation analysis in piriform cortex. jnphys. 78, 2546-2559.
Kapur, A., Pearce R., Lytton WW., & L H. (1997).  \gabaa-mediated IPSCs in piriform cortex have fast and slow components with different properties and locations on pyramidal cells: Study with physiological and modeling methods. jnphys. 78, 2531-2545.
J
Johnson, D. H., Jung R., & Ernst U. (2009).  Computational Neuroscience (CNS*2009). BMC Neuroscience. 10, I1.
G
Günay, C., Smolinski TG., Lytton WW., Morse TM., Gleeson P., Crook S., et al. (2008).  Computational Intelligence in Electrophysiology. Studies in Computational Intelligence. 122, 325-359.
Graham, J. W., Angulo S., Gao P. P., Dura-Bernal S., Sivagnanam S., Hines M.., et al. (2018).  Embedded ensemble encoding: A hypothesis for reconciling cortical coding strategies. Society for Neuroscience 2018 (SFN '18).
Graham, J.. W., Gao P.. P., Dura-Bernal S.., Sivagnanam S.., Hines M.. L., Antic S.. D., et al. (2019).  Modeling network effects of dendritic plateau potentials in cortical pyramidal neurons. Society for Neuroscience 2019 (SFN '19).
Gleeson, P., Cantarelli M., Marin B., Quintana A., Earnshaw M., Piasini E., et al. (2018).  Open Source Brain: a collaborative resource for visualizing, analyzing, simulating and developing standardized models of neurons and circuits. bioRxiv. 229484.
Gleeson, P., Marin B., Sadeh S., Quintana A., Cantarelli M., Dura-Bernal S., et al. (2016).  A set of curated cortical models at multiple scales on Open Source Brain. Computational Neuroscience Meeting (CNS 16').
Gao, P., Graham J. W., Angulo S., Dura-Bernal S., Lytton WW., & Antic S. D. (2017).  Dendritic plateau generation model in cortical pyramidal neurons: A link to cortical ensembles. Society for Neuroscience 2017 (SFN '17).
Gao, P. P., Graham J. W., Angulo S. L., Dura-Bernal S., Hines M. L., Lytton WW., et al. (2018).  Recruitment of neurons into neural ensembles based on dendritic plateau potentials. Society for Neuroscience 2018 (SFN '18).
Gao, P., Graham J., Angulo S., Dura-Bernal S., Hines M., Lytton W. W., et al. (2018).  Recruitment of neurons into neural ensembles based on dendritic plateau potentials. Computational Neuroscience Meeting (CNS 18').
D
Dura-Bernal, S.., Neymotin S.. A., Suter B.. A., Kelley C.., Tekin R.., Shepherd G.. M., et al. (2019).  Response to simultaneous long-range inputs and oscillatory inputs in a multiscale model of M1 microcircuits. Society for Neuroscience 2019 (SFN '19).
Dura-Bernal, S., Gleeson P., Kerr C., Graham J., Quintana A., & Lytton WW. (2018).  Neurosim-lab/netpyne: v0.7.7.
Dura-Bernal, S., BA S., Kerr C. C., Quintana A., Gleeson P., Shepherd GMG., et al. (2016).  NetPyNE: a Python package for NEURON to facilitate development and parallel simulation of biological neuronal networks. Computational Neuroscience.
Dura-Bernal, S., Suter B. A., Neymotin S. A., Kerr C. C., Quintana A., Gleeson P., et al. (2016).  NetPyNE: a Python package for NEURON to facilitate development and parallel simulation of biological neuronal networks. Computational Neuroscience Meeting (CNS 16').
Dura-Bernal, S., Neymotin S., Suter BA., Shepherd GMG., & Lytton WW. (2018).  Long-range inputs and H-current regulate different modes of operation in a multiscale model of mouse M1 microcircuits. bioRxiv.
Dura-Bernal, S., Griffith E. Y., Marczak A., O'Connell N., McGinnis T., Lytton W. W., et al. (2019).  Data-driven model of auditory thalamocortical system rhythms. Society for Neuroscience (SFN '19).
Dura-Bernal, S., Zhou X., Neymotin S., Przekwas A., Francis J. T., & Lytton WW. (2015).  Cortical spiking network interfaced with virtual musculoskeletal arm and robotic arm. Frontiers in Neurorobotics. 9,
Dura-Bernal, S., Li K., Brockmeier A., Kerr C., Neymotin S., Principe J., et al. (2014).  Modulation of virtual arm trajectories via microstimulation in a spiking model of sensorimotor cortex. BMC Neuroscience. 15, P106.
Dura-Bernal, S., Suter B. A., Quintana A., Cantarelli M., Gleeson P., Rodriguez F., et al. (2018).  NetPyNE: A GUI-based tool to build, simulate and analyze large-scale, data-driven network models in parallel NEURON. Society for Neuroscience 2018 (SFN '18).